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Abstract: In this paper we present a microelectronic implementation of a 
neural network of coupled oscillators that can segment black and white images. 
As an alternative to structures used in computer simulations where 
mathematical simplicity is more important, we used simple current 
mode astable multivibrators that can be easily implemented on silicon. 
Experimental results demonstrate the feasibility of this approach. 

 

 
Introduction 
 
It is well known that the visual system of higher animals and humans captures light 
from its surroundings through sensory cells of the retina. So, the representation of the 
outer world is made of discrete pixels at this level, one pixel for each sensory cell. 
However, Gestalt psychology demonstrates that humans perceive objects instead of 
discrete pixels. This means that some sort of processing should be done to transform 
these pixels into coherent objects, a process known as segmentation. 
Some basic processing of the visual system is carried out in the retina [1] as detection 
of movement, filtering, etc. and then, information is led to the first layers of visual 
cortex where higher levels of perception, as scene segmentation, are placed. 
It is obvious that some sort of segmentation must be done before perception of objects 
because there is too much redundant information in a raw matrix of pixels. However, 
to successfully segment an image, some knowledge of what is seen is also needed, so 
memory and attention are compulsive before segmentation. This suggests that there 
exists some kind of feedback between attention, memory and segmentation layers. 
This assumption is important when implementing a segmentation system because a 
successful process of perception as found in animals must be considered as a whole 
and not made of small pieces of different sub processes. 
Experimental findings [2] [3] suggest that neural oscillations and phase locking of 
different populations of neurons of visual cortex are related to the perception of objects. 
Some models have been developed to mimic that behaviour [4] [5] [6] [7] and some 
of them proved able to successfully segment real images. Among them, the LEGION 
algorithm is of high interest because of its good behaviour. However, implementing 
such an algorithm has the important drawback of the high computation load when 
compared to other standard segmentation algorithms [8]. The reason for such a big 
load is that a number of differential equations must be solved for every pixel, leading 
to a great number of mathematical operations for a simple image. This important 
drawback has led researchers to develop adaptations of this algorithm to speed it up 
[9]. However, this method is still computationally expensive. 
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Hardware solutions have been proposed to solve this problem [10] [11] where instead 
of calculating the oscillator evolution, oscillators themselves are physically 
implemented in VLSI. However, a straight implementation of the equations proposed 
in software models may lead to area and power consuming designs. In this paper, we 
present the VLSI implementation and some results of a hardware model designed to 
reduce area and power consumption of the network [12]. 
 
 
Algorithm Overview 
 
In this section, we give a quick overview to a segmentation algorithm developed by Wang 
and Terman [4] that has been successfully tested with different kind of images [9][13]. 
This algorithm, called LEGION (Locally Excitatory Globally Inhibitory Oscillator 
Network), consists of a 2-dimensional network of relaxation oscillators locally 
connected with positive coupling and a global cell negatively connected to all 
oscillators. Each oscillator is associated with a characteristic of the input scene (e.g. 
pixel intensity, motion, pre-processed acoustic components) (Fig. 1). When the 
segmentation process concludes, characteristics that belong to the same object are 
grouped together and oscillator phases code this binding information. For the sake of 
simplicity, simple luminance images with each pixel connected to one oscillator are 
used in this paper. Objects are groups of pixels of the same colour (black or white in 
this case) that are spatially connected to each other. 

 
Figure 1: Network structure. Each circle represents a cell. Only excitatory centre cell 

connections and bottom line cell connections to inhibitor are shown for clarity. 

The basic block of the LEGION network is the relaxation oscillator. The exact 
equation that gives the time behaviour of the oscillator is not important provided it 
has some basic properties [14]. Different equations have been used but the most 
common ones are given below: 

( )( )( )ii
i

iii
i

yx
dt

dy

Sycxx
dt

dx
i

−+=

++−+−=

βγε

ρ

tanh1

3 3

 Eq. 1 

Oscillator (i) is defined as a feedback loop between a fast excitatory unit (xi) and a 
slow inhibitory unit (yi). Sx represents excitatory and inhibitory synapses from nearest 
neighbours of oscillator i and from the global cell. ρ is the noise, a necessary term to 
apply a random component to the system strong enough to desynchronise oscillators 
that not belong to the same object. Obviously, this term should be included when 
simulating the equation system on a digital computer because digital operations only 
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include very small truncating errors, however, it is not necessary in a physical analog 
implementation due to mismatch and real noise. Finally c, ε, γ and β are constants. 
Excitatory synapses are positive couplings between adjacent cells. If two cells that are 
close enough and have a similar value (both are black or white in a b/w image or have 
similar luminance level in a monochrome image), an excitatory connection is 
established. When a cell goes active, that is to say, its x variable has a high value; its 
output synapses excite all cells that have an excitatory connection. On the other hand, 
when a cell is not in its active state (x has a low value) synapse values are null. 
Inhibitory synapses are negative couplings that are connected to all cells and their 
value depends on the state of a global cell or global inhibitor that reflects the state of 
the whole network. It activates when any cell of the network is active. 
 
 
VLSI Friendly Algorithm 
 
The basic oscillator we propose is an astable oscillator built of a damped integrator 
and a hysteresis comparator (Fig. 2). 
Both oscillator subsystems can be analysed as integrators provided the comparator has 
a lower time constant than the integrator (Fig. 3). 

∫

Damped
integrator

Hysteresis
comparator

∫

Damped
integrator

Hysteresis
comparator

 
Figure 2: Block diagram of the basic 

oscillator 
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Figure 3: Simplified circuit diagram of 

the basic oscillator

The damped integrator consists of two current sources, namely Ides, which is constant 
and Iloa, which depends on the output voltage Vout. Iloa is zero when comparator output 
is low, thus capacitor Cint is progressively discharged. When comparator output is 
high, Iloa has a value higher than Ides hence capacitor Cint becomes charged. 
The comparator is also an integrator, but much faster than the former. It implements a 
hysteresis cycle and creates a positive feedback. Current Ip has a small value when 
output voltage (Vout) is low therefore capacitor Cout is discharged. On the other hand, Ip 
has a higher value than In when output (Vout) is high thus charging capacitor Cout. In is a 
current that depends on the voltage of Cint with a monotonic growing function In=f(Vint).  
Equations for this system are: 
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Where ϑ loa and ϑp are thresholds, Vmax is the power supply voltage, Ides, Iloa0, Ipos and 
Iwid are constants (Iwid+ Ipos>In(Vint)> Ipos  ∀ Vint) 
In addition to the basic behaviour, there is also synchronization between adjacent 
coupled cells. The mechanism we use to couple oscillators is a technique called Fast 
Threshold Modulation (FTM)  [14]. It consists in shifting the state-plane orbit of the 
oscillator to force it to jump to the active state (Vout=Vmax) when it is near enough to it.  
Equation for Ip changes to Ip=Iwid+Ipos+Iexc when neighbour coupled cell is active and 
it does not change (Ip=Iwid+Ipos) when this cell is silent. Iexc is the excitatory current 
that shifts the oscillator orbit. 
Note that two synchronized oscillators have different orbits than an oscillator with 
different or null excitation. To help synchronization, excitatory currents are 
normalised so the sum of all of them for a particular cell when all its neighbours are 
active is the same for each oscillator: 

nj
n

I
I exc

ijexc ..1;, ==  Eq. 3 

where Iexc,ij is the excitatory current contributed by coupled cell j to cell i and n is the 
number of coupled cells to i. 
To desynchronise cells that do not belong to the same object, Selective Gating is used 
[4]. It consists in shifting all oscillator orbits in the opposite direction when any 
oscillator in the network is in its active state. That is to say, Ip= Ipos+[Iwid+ Iexc]-Iinh 
where Iinh is the inhibitory current. If an oscillator or any other oscillator of the same 
object is in its active state, Iexc will be bigger than Iinh and oscillations will not stop. 
On the other hand, if an oscillator is not in its active state, Iinh will be strong enough to 
prevent the oscillator to jump to its active state and delaying its oscillation. This 
segments oscillators that belong to different objects. It should be noted that if two 
oscillators are randomly synchronized, Selective Gating itself couldn’t desynchronise 
them. To solve it, random noise must be added to digital simulations. However, 
experimental results presented in this paper show that it is not necessary to add this 
element when using analog hardware oscillators. Small mismatches between cells are 
strong enough to prevent random and power supply noise synchronization. 
 
 
VLSI Implementation 
 
In this section, we present the microelectronic implementation of the circuitry. As the 
most important application of such a design is to be used in very low power portable 
systems where digital computers may not be adequate, the main goal has been to 
reduce the area occupancy and power consumption and to maximize its possibilities 
to adjust parameters for testing purposes. 
We have designed a 16x16 matrix of oscillators on a single chip using CMOS AMS 
0.8 µm technology. The area occupancy of one cell (oscillator, complete synapses and 
one bit memory cell) without external wiring is 85x79µm2. The full cell area is 
129x90µm2 and the total circuit area (including I/O PAD’s) is 6.7mm2. A 
microphotograph of the complete chip is shown in figure 5. 
Communication to the exterior is a very delicate aspect of the circuit due to its parallel 
nature. In this experimental stage, an image should be loaded and the segmentation 
results have to be read by the external circuitry using a serial protocol to keep the 
number of I/O ports reasonable. However, the objective for practical uses should be to 
embed this network in an image sensor and/or in other parallel processing stages. 
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To load the input image, we have chosen a single bit input that charges a 256-bit shift 
register. To output results, we use simple dynamic memory cells that can be read a 
row at a time. Therefore, information is stored in the internal memory and then read 
by the external circuitry by rows of 16 elements. This method of reading the network 
state at a precise time is used because the process can take more than a considerable 
fraction of oscillator cycle. Then, we can sample the whole network state at 
frequencies of the order of MHz that is fast enough to study its behaviour.  
 
 
Experimental Results 
 
To test the circuit we used a custom board to bias the analog circuitry and a PC with a 
digital data acquisition card to generate the digital sequences to input the image and 
output the results. 
In figure 4, a successful segmentation is presented. After the left side image being 
loaded into the network, the state of the matrix of oscillators evolves through the four 
states on the right, and all three objects and the background are segmented. 

Arrow (t=1µs) square (t=8µs) cross (t=13µs) background (t=18µs)Input Arrow (t=1µs)Arrow (t=1µs) square (t=8µs)square (t=8µs) cross (t=13µs)cross (t=13µs) background (t=18µs)background (t=18µs)InputInput

 
Figure 4: Input image and output at different time steps 

Another application of this network is to count the number of objects in an image. As 
the global inhibitor goes high each time a group of pixels (object) activates, the 
frequency of the inhibitor is N times the frequency of any single oscillator in the 
network. The quotient of both frequencies is the number of objects in the scene. This 
result is presented in figure 6. 

 
Figure 5: Microphotograph of the chip 

 
Figure 6: Time behaviour of one basic 

oscillator (top) and the inhibitor (bottom)
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Conclusions 
 
In this paper, we have presented a microelectronic implementation of LEGION 
algorithm. To reduce power consumption and area occupancy we have used 
oscillators that are easily implemented in VLSI design without losing network 
functionality. Experimental results demonstrate the possibility of using the network to 
segment images faster than computer simulations and eventually it could be a 
reasonable alternative to traditional segmentation algorithms. 
An important trade-off of this circuit is delays vs. power consumption. When biasing 
currents are too low (and also power consumption), delays between oscillators can be 
big enough to prevent oscillators from synchronizing, leading to inaccurate results. 
This figure is essential when comparing the oscillatory matrix with other methods, so, 
results that are more extensive and a comparison with other alternatives to 
segmentation, will be presented in following papers. 
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