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Abstract. The weight perturbation learning algorithm was formerly developed
by hardware designers for its friendly features in the perspective of the analog
on-chip implementation. Therefore it has not been used for rea-world
applications but it has been verified only on test problems. To significantly
increase its attitude for the on-chip implementation, we proposed a local
learning rate adaptation technique, which anyway, increases aso the
performance. At the same time to demonstrate the efficiency of the weight
perturbation algorithm, in this paper we report the results of the application of
the proposed algorithm to the classification of remote-sensing images. Our
results compare favorably with those reported in the literature and demonstrate
the soundness of the proposed approach.

1. Introduction

Artificia Neurd Networks (NNs) are an efficient solution for solving many real
world problems. At present, there is a growing interest in applications like Optical
Characters Recognition (OCR), industrial quality control analysis and many othersin
which Neural Networks (NNs) can be effectively employed [1]. Many researchers
have recently proposed circuit architectures for the analog VLS| implementation of
Multi Layer Perceptron (MLP) based networks to achieve low power consumption,
smal size and high speed (i.e. portable equipment) [2]. The Weight Perturbation
(WP) agorithm, was formerly developed to simplify the circuit implementation [3],
[4] and dthough it looks more attractive then BP for the andog VLS
implementation, its efficiency in solving real world problems has not yet been heavily
investigated.

In this paper, we want to evaluate and validate the WP learning algorithm in a rea
world application like classification of remote-sensing images. We compare our
results with those obtained in [5]; this paper is a remarkable example of the
application on NNs for the classification of remote-sensing images. We adopt a local
learning rate architecture with an adaptive management strategy. In Section 2 we
analyze the WP learning agorithm and focus our attention on the adaptive and local
management of the learning rate. In Section 3 the case study is investigated while
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results are reported in Section 4 and discussed in Section 5 where conclusions are aso
drawn.

2. The weight perturbation learning algorithm with local and
adaptivelearningrate

Using gradient descent optimization techniques, the learning task is accomplished by
minimizing, with respect to the synaptic weights vaues, the output error function €
[6]. The weight update learning ruleiis:

o€

AW, =—n—
W =77 o,
where 77 is the learning rate, € represents the output error function to be minimized
and w;; is the synaptic weight that connects the i" neuron to the j™ neuron. The main

computational issue (from the circuit point of view) is the computation of & dw;.

@

The WP agorithm estimates rather than calcul ates the gradient’s value of the output
error function. This method estimaes the gradient simply through its incrementa
raio. If the weight perturbation p; j(“) is smdl enough, we can neglect the higher order
terms and write:
O-n e(wy + p.j(::])) —&(w;) @)
P
where p;" is the perturbation injected in the w;; synaptic weight at the n" iteration and
Aw; is the value used to update the weight w;. The difference between the output
error function before and after the perturbation of the generic weight wij (see Eq. 2) is
used to estimate the gradient’ s value with respect to w; [3].

WP is a gradient descent method and then it's possible to being trapped in loca
minima [3]. The shown algorithm is the smplest form of the WP agorithm: only one
synapse’ s weight is perturbed a atime; we cal this technique as sequentia [3]. The
sequentia process, however, can be slow for large size NNs. To solve this problem,
some different approaches have been proposed [7].

Awy;

For the case study presented in this paper we chose the fully paralel perturbation
strategy [7], [9], i.e. a synchronous parallel perturbation of the weights. Moreover it
gives an efficient and modular learning architecture that can be easily mapped into
analog VLS hardware [8].

For circuit implementation issues, we consider every weight perturbation p;™ as
equal in vaue but randomin sign [7]:

pij(n) = pertij(n)step ©)

where step is the vaue of every perturbation of every synaptic weight wi;, while
pert;™ can assume +1 or —1 with equal probability.
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We can rewrite Eq. 2 as follows:

(n)
gw +p; ") - g(w;
w0 SR (”)=—f7 25 pert,” ==/ detpert®  (4)

o]
We can combine the information of the term step in the 7 value, i.e.:
— 0 -
Awy =-n'Ae Lpert; Vo= %tep %)

m )t
pert;t” = _1 with equal probability
(6)
To compute the synapse’s weight wij, we only need to compute A and to known
pert; ™

2.1 Improvementsin the lear ning conver gence speed

To accelerate the learning process, we adopted an adaptive and locd learning rate
management strategy [10]: each synapse has its own local learning rate 77;; and the
vaue of each learning rate is changed adaptively following the behaviour of the local
gradient error function (J& Ani;). More precisely, 77 is increased when during at |east
two successive iterations, the signs of the term de/dwi; are equal, and it is decreased
when the signs of the term d&/ dw;j, during two consecutive iterations, are opposite.

So the loca learning rate update rule can be formulated as follows:

| nm™ ! | |
i (t){ _ .'(t)} when Siij (t) = S'ij(t- 1) +1if oe/ow;' >0
n t+1) = b where S (t) = sign(de / dw;') =
-1if g/dw;' <0

mn

”i,jl(t){ ,7|
7

1

2
when S'ij (t) 2 S'ij(t- 1)
®)

where, taking in account the generic synapse connecting the i neuron of the I layer
and the j™ neuron of the (I-1)™ layer, Sj(t) is the sign of the gradient component
de(t)ldn}, and 77'(t) is the learning rate vaue at the t" iteration; 7™ and ;™" are
respectively the maximum and minimum values of the learning rate and y is the
learning rate adaptation coefficient [y[J(0+1)].

2.2 Thelearning algorithm

In Fig. 1 the WP agorithm used in our experiment is summarized. Please, note that:
1y is the loca Iearnlng rate, £ represents the output error function that must be
minimized and w;; is the synaptic weight that connects the i™ neuron to the j™ neuron.

The step parameter is the value of the perturbation of each synaptic weight wi, while
pert;; can assume +1 or —1 with equa probability.

The learning strategy adopted is the by-pattern approach [1].
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The by-pattern examples presentation procedure introduces some randomness in the
learning process that often may help in escaping from the local minima of the output
error function & moreover, this technique is usualy faster and more effective when
the training set is composed of thousands of pattern examples.

for(each epoch){

set each n; to 7"

set each S;(t) at 1 (for exanple);

set each pert;;® at a random val ue;

For (each pattern of the training set)
{Choose a pattern in random way and put it in

input to the network;

Feed- Forwar d phase;
Conpute g(w;);
Wei ght Perturbation;
Feed- Forwar d phase;
Conpute g w;+stepfpert;;);
Compute Aw;=—r; D& w;+steppPerti;)- & w;)]Pertij;
Each n;; is adaptively updated;
Wei ght Update; }}

Fig. 1 The proposed WP algorithm.

3. Thecase study: classification of remote-sensing images

The case study and the data sets are based on those of [5]. The data base is a
multisource data set composed of images of the same geographic area acquired by
two different types of airborne sensors: a Daedalus 1268 airborne thematic mapper
(ATM) scanner and, a PLC-band, fully polarimetric, NASA/JPL SAR sensor. The
sdlected data set refers to a section of 250x350 pixels of a scene acquired in a
agricultural area near Feltwell, U.K.. The available ground truth was used to prepare a
reference map to assess the classification error. Five land cover classes corresponding
to five types of crops (sugar beets, stubble, bare soil, potatoes and carrots) are
considered. Applying a simple running mean filtering to both the ATM (5x5 window)
and the SAR (9x9 window) images, the noise affecting the intensity values of the
images is reduced [5]. In [4] the agricultural fields images were randomly subdivided
into two digoint sets: 5124 pixels were selected from the fields of one set and used as
training set, and 5820 pixels were selected from the fields of the other set and used as
test set.

To evaluate more correctly the learning performance, in the experiments here
presented, the pixels used in [5] as test set have been furthermore partitioned in two
data set (according to [1]): 2909 pixels are used for the validation set and 2911 pixels
are used for thetest set. Theresulting data set, is shown in Tab. 1.

Fifteen channels were selected to form a feature vector for each pixel: they selected
the six ATM channels corresponding to TM channéls in the visible and infrared



ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 217-222

spectrum (except the therma band) and the nine SAR channds in the PLC-band and
HH-, HV-, VV-palarizations. Each feature has been normalized in the range [-1,+1].

Tab. 1 The data base used in the experiments.

Original DB [5]
Test set | Training set | Validation set | Test set

Sugar Beets 2043 1488 1021 1022

508 2 Subble 1371 1070 686 685
55%3s Bare Soil 555 341 277 278
ERES Potatoes 884 1411 442 442
Zzago Carrots 967 814 483 484
Overall 5820 5124 2909 2911

Our DB

4. Experimental results

The size of the Multi Layer Perceptron used in the simulations was. 15x15x5
neurons. The step parameter (see Eq. 3) has been kept fixed to 10°. We save the
weights configuration when the output error function e, computed on the validation
set, reachesthe minimum [1] (i.e. at the overfitting point). Thelearning rate was:

o 7™=10%and n™"=10"for the WP with adaptive and local learning rate,
« n=10"for the WP with fixed learning rate.

Tab. 2 Classification error (mean and standard deviation) computed over 15 trials.

Output error value
Resultsreported in [5] Our results
L and-cover Classical Technique Adaptive local Fixed learning rate
classes technique proposed in [5] learning rate 9

St St St S

Mean deviation Mean deviation Mean deviation Mean deviation
Sugar beets | 1.8% 197 0.7% 143 1.6% 0.47 1.3% 0.39
Stubble 19.6% 378 13.0% 4.29 13.9% 3.19 14.1% 0.41
Bare soil 42.5% 16.91 17.1% 101 41% 5.77 39.1% 216
Potatoes 26.0% 653 23.7% 0.84 3.8% 1.60 6.4% 0.75
Carrots 20.6% 6.19 13.6% 025 12.6% 1.60 135% 0.62
Overall 16.4% 219 10.8% 0.81 10.4% 1.06 10.7% 0.10

From table Tab. 2 it is easy to deduce that the WP agorithm reduces the overdl
classification error and shows a more stable behavior versus the initial weight sets. In
particular, the overall classification error made by the WP with adaptive local learning
rate was found in the range 8.9% to 11.5%, the mean and the standard deviation being
equal to 10,4% and 1.06 respectively. In the case of the WP with fixed learning rate
the overall classification error was in the range from 10.6% to 10.8%, the mean and
the standard deviation being equal to 10,7% and 0.1 respectively.
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5. Conclusons

The aim of our work is to demonstrate the capabilities of the WP learning a gorithm
for the classification of remote sensing images: we adopted a local learning rate with
adaptive management: our results are fully comparable with those obtained in [5].
This implies that WP can be efficiently used to solve classification problems in the
remote-sensing images field. In particular, the results for the WP with fixed learning
rae and with fully paralel perturbation strategy, proves the soundness of the VLS
architecture introduced in [8].
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