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Abstract. An exact solution of a system of coupled di�erential equa-
tions describing the dynamics of a special class of winner-take-all net-
works is given. From the solution two properties of the short-term-
memory traces are derived: (1) information preservation and (2) a dis-
crimination measure. These properties justify a biologically inspired fault
tolerant extension of the network using di�erentiating neurons.

1 Introduction

One way to deal with the maximum selection from a set of inputs within a con-
nectionist framework are winner-take-all (WTA) networks ([4]). The operation
of these networks is a mode of contrast enhancement and pattern normalization
where only the unit with the highest activation �res and all other units in the
network are inhibited after some setting time. References to common competi-
tive architectures to select the maximum or minimum from a set of data can be
found in [10]. Exemplary for a practical application �eld of WTA nets we men-
tion classi�cation tasks and knowledge discovery of structured objects ([12] and
references therein). Results on the computational power of competitive nets
can be found in [11].

There is a growing body of mathematical results on competitive neural
systems describing the dynamics of competition. Well known series of arti-
cles concerning the stability analysis includes the work of Wilson and Cowan,
Grossberg et al., Amari et al. ([9] and references therein), and the Lyapunov
method in the Cohen-Grossberg ([1]) and Hop�eld-Tank ([7]) models. Further
interesting results on the dynamics of competitive models are given in [2], [3],
[6], and [8].

All articles mentioned have in common, that they examine models for which
the corresponding system of di�erential equations can't be solved exactly for the
general case. Thus, results stating that a dynamical system must converge to
an equilibrium do not specify which equilibrium in fact is approached. Though
it can be shown that competitive networks often arrive at a certain choice, but
the nature of the choice is highly dependent on the network parameters, the
initial activation, and the external input. In general, knowledge of a solution
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enables us to uncover and prove basic properties of the networks behavior in a
more simpli�ed fashion. Solving dynamical systems assumes simpli�cations in
the model of consideration. The understanding of a simpli�ed model then can
suggest principles that can also be used in more complex models.

This paper investigates the dynamics of a special class of mutually inhibitory
WTA networks with linear transfer function and external input. The dynamics
of the net can be described by a system of coupled di�erential equations which
can be solved exactly (Sect. 2). From the solution we derive and prove two
properties of the network's behavior: (1) a form of information preservation in
the short-term memory (STM) trace; (2) a form of an inherent discrimination
measure (Sect. 3). Both properties give rise to a robust, fault tolerant exten-
sion of our model using di�erentiating neurons (Sect. 4). The extended model
detects local extrema in the STM traces and stabilizes the system.

We denote vectors by bold letters (e.g. x). For any vector x = (x1; : : : ; xn)
we set �x := 1

n

P
i xi and �x := (�x; : : : ; �x).

2 The WTA model

The dynamical system we will work with is a linear WTA model with laterally
inhibitory connections of the form

_xi(t) = �dxi(t) +
nX

j=1; j 6=i

wijf(xj(t)) + Ii; x0i := xi(0) (1)

where xi(t) is the activation or the STM trace (in the sense of Grossberg, see
e.g. [5]) of unit i, wij = �w < 0 represents the inhibitory strength of the
synapse connecting unit i and unit j, d > 0 is the sel�nhibition and Ii an
external input. Here we assume w > d � 0. f is a transfer function of the form

f(x) =

8<
:

� : for x � �
x : for x 2 ] ; �[
 : for x �  

whereby  < � are arbitrary constants. This network is a special case of an
additive short-term-memory model (see [5]). The aim of this network is to
discriminate input patterns, i.e. the components of an input vector.

In the following we focus on the dynamics of the net where the STM traces
xi(t) are in the range of the open interval ] ; �[. To investigate the general
tendency of the network's behavior we will assume � and  to be suÆciently
large or shifted towards +1 and �1. So we are concerned with a linear
transfer function f(x) = x. Then a solution of eqn. (1) can be given in closed
form: The vectors v1 = (�1; 1; 0; : : : ; 0)T , : : :, vn�1 = (�1; 0; : : : ; 0; 1)T , vn =
(1; : : : ; 1)T form an eigenbasis of W with distinct eigenvalues �1 = w � d and
�2 = �(n � 1)w � d where v1; : : : ;vn�1 2 Eig(W;�1) and vn 2 Eig(W;�2).
To verify this statement checkWvi = �vi (1� i�n) for a suitable � 2 f�1; �2g
and show that the vi are linear independent. With knowing the eigenvectors
and their corresponding eigenvalues we are able to derive a solution.
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Proposition 1 The solution of the di�erential equation _x = Wx + I in R
n

with initial condition x(0) = x0 is given by the formula

x(t) =

�
x0 � �x0 +

I��I

�1

�
e�1t +

�
�x0 +

�I

�2

�
e�2t �

I��I

�1
�

�I

�2
:

Proof: The proof is a straightforward matter of di�erentiating the solution
and plugging the derivative into the di�erential equation to check whether it is
correct. �

A global stabilty analysis shows that the origin 0 is a saddle point, i.e. the
system is unstable. Trajectories with x0 = �x0 go to 0 on the line in direction
of positive and negative multiples of the eigenvector vn, and those with �x0 = 0
go to 1 on the hyperplane de�ned by Eig(W;�1). All other trajectories are
superpositions of these motions. Furthermore it can be shown that the net
performs contrast enhancement1 and pattern normalization2 whereby the ratios
of contrasts remain constant the whole time.

3 Analysis of the STM traces

In the following some properties of the STM traces xi(t) are derived. A key
result is the ability of the system to preserve information given by the input
patterns in the short-term-memory of units with above average initial activa-
tion. During discrimination the stored information is used to provide a measure
of how plausible the choice is. For convenience, we call units with initial acti-
vation x0i > �x0 dominating units.

For a dominating unit i the STM trace xi(t) decreases until it reachs a
minimum at ti�. Subsequently the activation xi(t) is monotonously increasing
for t > t�. On the other hand, if x0i < �x0, then xi(t) is monotonously decreasing
for t > 0. In the homogeneous case this is evident for xi < �x0 6= 0, since �2 < 0
and by the following inequality

xi(t) = (xi � �x0)e
�1t + �x0e

�2t < �x0e
�2t:

Of interest are the STM-traces xi(t) of dominating units i, since they reveal
a form of information preservation and an inherent discriminating measure
when they arrive at their minimum. To show these properties, we �rst have to
determine the minimum of xi(t).

Proposition 2 Let ui := (Ii � �I)=�1 + �I=�2, yi := �1(x0i � �x0) + Ii � �I,
zi := ��2�x0 � �I. If the following conditions are satis�ed

(1) x0i > �x0 (2) Ii � �I (3) zi 6= 0 (4) yi=zi > 0

then xi(t) has a global minimum at

ti� =
1

�2 � �1
ln

�
yi
zi

�
with xi(t

i
�) =

�2 � �1
�1�2

y
�2

�2��1

i z
�1

�1��2

i � ui:

1contrast enhancement: The absolute di�erence jxi(t) � xj(t)j increases with time t.
2pattern normalization: the total activation

P
i xi approaches 0 with increasing time t.
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Proof: Using ui, yi, and zi in Prop. 1 gives us

xi(t) =
1

�1
yie

�1t �
1

�2
zie

�2t � ui:

Di�erentiating xi(t) and equating with 0 leads to _xi(t) = yie
�1t � zie

�2t = 0.
Solving this equation to t yields ti�. Since xi(t) is continuously di�erentiable
and �xi(t) > 0, ti� is indeed a global minimum. To conclude the proof, plug ti�
into xi(t). �

Conditions (1) and (2) restrict the statement to all STM traces xi(t) of
dominating units i, whereas conditions (3) and (4) exclude the stable state and
normalized patterns, i.e. patterns with �x0 = 0. The STM traces of stable states
and normalized patterns are either constant or monotoneously increasing and
decreasing, respectively.

Now let us turn to the key result of this paper, the ability of the network to
preserve the supplied information and to use this infomation to discriminate the
input patterns by a reasonable measure. At time ti� the STM of unit i retrieves
approximately the di�erence x0i � �x0 of the initial activation of unit i and the
average initial activation �x0. This approximation improves for an increasing
number n of units (see Corallary 1). The dominating units do not only signal

the choice made, but also provide a measure of how plausible and how focussed

the decision is. According to Prop. 2 the measure is a monotoneously increasing
function d of the di�erence x0i � �x0.

Corollary 1 Consider the conditions of Prop. 2. Then

lim
n!1

xi(t
i
�) = x0i � �x:

Proof: Follows directly from Prop. 2 by taking limn!1. �

Corollary 1 suggests two extensions of our model (see Sect. 4). To justify the
extensions we have to prove two order preserving properties of the STM traces.
The �rst one says that the network preserves the order of the activations.

Lemma 1 Let x0i < x0j and Ii � Ij . Then xi(t) < xj(t) for t � 0.

Proof: Using the solutions xi(t) and xj(t) given in Prop. 1, we obtain

xi(t)� xj(t) = (x0i � x0j)e
�1t +

Ii � Ij
�1

(e�1t � 1):

By assumption x0i � x0j < 0 and Ii � Ij � 0. Since �1 > 0, we have
Ii�Ij
�1

� 0

and e�1t�1 � 0 for t � 0. Putting all inequalities together proves the assertion.
�

A similar statement also holds for the chronological order of the STM traces
arriving at their minima. The STM trace xi(t) of unit i passes the minimum
before the STM trace xj(t) of unit j if x0i > x0j . More precisely:
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Lemma 2 Consider the assumptions in Prop. 2. Let x0i > x0j > �x0 and

Ii > Ij > �I. Then ti� < tj�.

Proof: First note that zi = zj for all 1 � i; j � n. By assumption

yi � yj = �1(x0i � x0j) + Ii � Ij > 0

holds. Hence, yi=yj > 1. With �1 = w � d and �2 = �(n� 1)w � d we get

ti� � tj� =
1

�2 � �1

�
ln

�
yi
zi

�
� ln

�
yj
zj

��
= �

1

nw
ln

�
yi
yj

�
< 0

�

4 Conclusion

The result of Corollary 1 justi�es two biologically motivated extensions of our
model with similar behavior in their STM traces: (1) an enlarged network
using (2) di�erentiating neurons. Extension (1) leads to a robust, fault tolerant
network whereas extension (2) keeps the STM traces bounded and guarantees
a stable behavior of the system.
(1) Robust, fault tolerant networks. The network can be enlarged without
changing the behavior of the STM traces by the following procedure. Increase
the number n of units by adding arti�cal units without changing the average
activation �x0. This can be achieved by connecting a �xed number k of copies
of each unit to the net where the activations of the copies are slighty perturbed
by a random noise. This enlarges the system to kn mutually inhibited units
consisting of n groups each with k units of nearly equal initial activation. If
the noise is Gaussian distributed with expectation 0 and small variance �2

compared to the initial activation of the original units, then the expectation
of �x0 of the enlarged system corresponds to the average of the original system.
Now let x0i be the initial activation of a representative of group i. Then at ti�
the activations of group i retrieve a better averaged approximation of x0i � �x
than unit i of the original system (Corollary 1). Thus, a wider distribution
of the input patterns does not only provide a system which is robust against
failure of single neurons but also sharpens the focus on the given problem.
(2) Di�erentiating neurons. We call neurons which are able to recognize
local extrema of their STM traces di�erentiating neurons. With di�erentiat-
ing neurons we can construct a network keeping the activations bounded and
leading to a stable state within �nite time. In mathematical terms, we may
describe a di�erentiating neuron i by the following pair of iterative equations3:

xi(t+ 1) = (1� d)xi(t) +
P

j 6=i wijyj(t) + Ii
yi(t+ 1) = xi(t+ 1) � f [xi(t)� xi(t+ 1)]

where xi(t + 1) is the activation of neuron i at time t+ 1, f(x) the threshold
function with f(x) = 0, if x � 0 and f(x) = 1 otherwise. Finally yi(t + 1) is
the output signal of the neuron.

3For convenience we consider iterative equations instead of di�erential equations.
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Now assume d = 0 and w suÆciently small, such that the iterative system
is a good approximation of the underlying system of di�erential equations.
From Lemma 1 and 2 we know, that the STM trace of unit i with maximal
initial activation arrives �rst at its minimum. This leads to an ouptut signal
yi(t

i
�) = 0. In the next iteration step the net will arrive at a stable state.

The winning neuron i is the one �rst entering a stable state. By construction,
neuron i has an approximately identical STM trace in the interval (0; ti�] as
given in Prop. 2.
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