
Numerical implementation of continuous
Hop�eld networks for optimization

Miguel Atencia2, Gonzalo Joya1 and Francisco Sandoval1

1Departamento de Tecnolog��a Electr�onica
E.T.S.I.Telecomunicaci�on

2Departamento de Lenguajes y Ciencias de la Computaci�on
E.T.S.I.Inform�atica

e-mail: matencia@lcc.uma.es
Universidad de M�alaga, Campus de Teatinos, 29071 M�alaga

Abstract. A novel approach is presented to implement continuous
Hop�eld neural networks, which are modelled by a system of ordinary
di�erential equations (ODEs). The simulation of a continuous network
in a digital computer implies the discretization of the ODE, which is usu-
ally carried out by simply substituting the derivative by the di�erence,
without any further theoretical justi�cation. Instead, the numerical solu-
tion of the ODE is proposed. Among the existing numerical methods for
ODEs, we have selected the modi�ed trapezoidal rule. The Hamiltonian
Cycle Problem is used as an illustrative example to compare the novel
method to the standard implementation. Simulation results show that
this "numerical neural technique" obtains valid solutions of the problem
and it is more eÆcient than other simulation algorithms. This technique
opens a promising way to optimization neural networks that could be
competitive with nonlinear programming methods.

1. Introduction

Since the seminal paper by Hop�eld and Tank [7] was published, optimiza-
tion has been a fundamental application of recurrent arti�cial neural networks
(ANNs). However, neural techniques have not achieved enough performance to
become competitive to nonlinear programming methods. These methods have
the advantage of being problem-oriented, so any parameter may be adjusted to
obtain maximal performance for a particular problem. On the contrary, com-
putational neural networks are intended to be a general methodology. Thus,
selection of neural models and adjustment of parameters must be performed for
each particular problem. Moreover, no systematic and theoretically founded
method has been found for this adjustment, which is usually carried out by

Thanks are due to Dr. Francisco Villatoro for suggesting the modi�ed trapezoidal rule.
This work has been partially supported by the Spanish Comisi�on Interministerial de Ciencia
y Tecnolog��a (CICYT), Project No. TIC98-0562

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 359-364



trial-and-error. Despite these drawbacks, optimization ANNs have achieved
interesting results and further study could lead them to become as eÆcient as
nonlinear programming methods.

After the target function is identi�ed with the Lyapunov function of the
network, the actual implementation of an optimization ANN comprises two
additional stages. On one hand, the dynamics of the ANN must be selected ei-
ther discrete [5] or continuous [6]. We restrict ourselves to continuous dynamics,
as in a previous work [8] it was the only to exhibit adequate optimization capa-
bilities. On the other hand, the selected dynamics must be implemented. Only
an analogical device is capable of accurately representing a continuous model,
but hardware implementation is costly and lacks the advantageous 
exibility
of the neural model. Thus, the implementation of ANNs is usually carried out
through the software simulation of the model on a computer.

In Section 2. the continuous dynamics II is implemented, by means of the
usual approximation of the derivative by the �nite di�erence. In Section 3. the
ordinary di�erential equation (ODE) that represents the continuous dynamics
is solved by the modi�ed trapezoidal rule. The usage of a numerical method
was already suggested in [4] as an alternative to hardware implementation, but
there exists no report about the e�ectiveness of this approach, to the best of
our knowledge. As an illustrative example, the Hamiltonian Cycle Problem
(HCP) is solved by means of both the standard and the numerical approach.
Simulations suggest the enhanced performance of the novel method. Finally,
in Section 4. some conclusions and directions of future research are exposed.

2. Continuous Dynamics

Hop�eld ANNs are dynamical systems that have been proved to be asymptot-
ically stable, as they have Lyapunov functions [5, 6, 1]. Convergence of the
network implies seeking a minimum of a target function, if this is put into
correspondence to the Lyapunov function. The evolution of a continuous ANN
[6] is governed by the following system of nonlinear di�erential equations:

dui
dt

= �ui + neti ; si(t) = g

�
ui(t)

�

�
; g(x) =

1

1 + e�x
(1)

where � is a parameter that controls the slope of the function g, and neti is
the linear term due to the input from the network, which, in the general higher
order case, has the form:

neti =

qX
j=1

X
(i1;i2:::ij )2C

n
j

i6=i1;i2:::ij

wi i1;i2:::ij si1 si2 : : : sij � Ii (2)

When the network is implemented on a digital computer, the di�erential is
simply replaced by the �nite di�erence:

�ui
�t

= �ui + neti (3)

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 359-364



so that, when �t = 1, the input potential to neuron i at simulation step k + 1
is de�ned with respect to potential at step k as follows:

ui(k + 1) = neti(k) (4)

An alternative model [1] is de�ned by the equation dui=dt = neti, so its
discretization is given by �ui=�t = neti. The implementation of this model,
called continuous dynamics I [8], was shown to critically depend on the selection
of �t. In the sequel, we restrict ourselves to the dynamical equation (1).

Many results reported on the continuous model (1), actually implement
the discrete equation (4), although sometimes this fact is not explicitly stated.
The dynamical properties of this discrete-time continuous-state model di�er
from those of the continuous model. In particular, its stability is guaranteed
only if neurons are updated asynchronously [2, 9, 13]. This fact is an impor-
tant drawback, as it discourages any implementation by parallel algorithms on
multiprocessor computers, which could lead to performance enhancements.

When applying a continuous-state model to an optimization problem that
requires integer solutions, which is the most interesting case [12], some mecha-
nism must be incorporated to force the states to discrete values. Usually, this
is accomplished by gradually incrementing the slope of the continuous sigmoid
function g, until, in the limit, it becomes a discrete step function. In our sim-
ulations, whenever the state approaches a �xed point inside the hypercube of
states, the parameter � is decreased. As an example, the discretization (4) of
the continuous model (1) is applied to the solution of the HCP and the results
are presented in the next Section.

3. Numerical Implementation

In this Section, the implementation of the continuous model is accomplished
by solving the equation (1) through a numerical method. An immediate ques-
tion arises as to which method should be selected. Numerical analysts have
developed a wide range of methods for di�erent applications. The intuitive
substitution of the di�erential by the �nite di�erence leads to the well-known
Euler method, which would be implemented by the vector equation �~u=�t =
�~u + ~net. When comparing this equation to those in the previous Section,
it appears that this is the same dynamical equation as (3), but now the neu-
rons are updated synchronously. As was mentioned before, this model is not
guaranteed to be stable, so it is ruled out. An interesting alternative, which
reduces the human time to program the simulation of the ANN, is the usage
of a canned method, implemented by a commercial numerical package. We
have tried the MATLAB implementation of the classical Runge-Kutta method,
i.e. the function ode45 [10]. Both this method and the adaptive step method
suggested in [4] result in excessive computational cost.

Finally, we have chosen the trapezoidal rule, which approximates the so-
lution of a -possibly multidimensional- di�erential equation ds=dt = f(s; t) by
the iterative procedure sn+1 = sn + (h=2) (f(sn; tn) + f(sn+1; tn+1)), where h

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 359-364



is the step size. This nonlinear equation should be solved for sn+1, because
the trapezoidal rule is an implicit method. Alternatively, we estimate sn+1
by the Euler method, and get an explicit method that is called the modi�ed
trapezoidal method [3]:

~sn+1 = sn + h f(sn; tn) ; sn+1 = sn +
h

2
(f(sn; tn) + f(~sn+1; tn+1)) (5)

which is used to implement a continuous Hop�eld ANN by calculating the
function f from equation (1), yielding the following formula:

f(s) =
1

�
s (1� s) (�� g�1(s) + net(s)) (6)

where the functional relation g0 = g(1�g) has been used and the input potential
u has been replaced by its value � g�1(s) as a function of the state s. Examining
equations (5) and (6), it is clear that the most complex operation of the method
is the evaluation of the nonlinear function g�1, and only two evaluations are
needed for each step. Therefore, the computational complexity of the modi�ed
trapezoidal rule is roughly twice that of the Euler method of the same step
size. However, in practice, the trapezoidal rule is expected to outperform the
Euler method, because a larger step size may be selected without compromising
stability.

When programming the numerical method, we realized that there exist im-
portant di�erences between implementing a Hop�eld ANN and solving an ODE
that represents a physical system. First of all, in the ANN we do not know
a priori the time interval that the solution must span, so the implementation
process must iterate until a stable state is reached. This fact must be taken
into account when programming the method. Secondly, the �nal state of the
ANN represents the solution of the considered problem, so only the �nal vector,
not the whole trajectory, is of interest. Thus, the program has no need to keep
intermediate states and a great amount of memory is saved. As a consequence
of the importance of the �nal, stable state, rather than the intermediate states,
the A-stability of the method is the main issue. This consideration strongly
supports the trapezoidal rule due to its better stability properties [3], when
compared to the Euler method. On the contrary, accurate representation of
the trajectory is unimportant, so the step size may be incremented to reduce
the computational cost, as long as stability is preserved. Finally, the vector
equation (5) involves synchronous updating of neurons while the usual imple-
mentation given by equation (4) is asynchronous. Matrix synchronous oper-
ations can be eÆciently implemented on parallel computers, thus leading to
enhanced performance.

As an example, the method given by equations (5) and (6) is applied to
the solution of the HCP [11], for a 5 node graph. In Table 1 the results
are shown and compared to the usual asynchronous implementation given by
equation (4), showing a greater performance of the numerical method. In
both methods, the usual strategy to approach a discrete state was needed: the

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 359-364



parameter � is decreased whenever the evolution has reached a stable state. No
special attention has been paid to the optimization of the simulation program.
Performance increment is expected when the implementation is re�ned.

Average time (seconds) Feasible solution rate
Asynchronous simulation 23.41 100 %
Modi�ed trapezoidal rule 10.97 100 %

Table 1: Solution of the 5 node HCP with the usual asynchronous simulation
and the novel numerical implementation. The experiment was repeated 100
times to obtain average values.

In the presented simulations, the step size was de�ned as h = 0:1. Previous
trials showed that a larger size could produce instability phenomena at the end
of the simulation, near a discrete state. This fact can be intuitively justi�ed in
the following way: for a linear equation y0 = �y, the region of absolute stability
of a numerical method depends on the product h�. The linearization of our
nonlinear equation is roughly proportional to 1=�, which plays the role of �.
At the end of the simulation, � has been repeatedly decreased so as to reach a
discrete state. Thus, if h is too high, the method may be out of the region of
absolute stability. With an adequate modi�cation of � the step size could be
increased obtaining enhanced performance. The selection of the parameters of
the method is crucial, and could lead to important re�nements. This subject
deserves more attention and is left for further research.

4. Conclusions and future directions

A novel approach is presented for the implementation of continuous Hop�eld
neural networks. The most important drawback of current simulation algo-
rithms of continuous ANNs is the una�ordable computational cost. In this
paper, the di�erential equation that represents the dynamics of the network
is integrated by a numerical method. After several considerations, we have
chosen the modi�ed trapezoidal rule, which presents better stability properties
than the simpler Euler method. The method has been applied to the solution
of the Hamiltonian Cycle Problem, and simulations show that this technique
presents higher performance, when compared to current algorithms.

When comparing the e�ectiveness of optimization algorithms, it should be
emphasized that nonlinear programming is a decades old discipline, and it
is still under a tremendous research e�ort. It is unfair requiring that novel
techniques, such as neural networks, are immediately competitive to classical
methods. The results in this paper must be analyzed under this view. They
are still far from being competitive to nonlinear programming, but the way
is open to several re�nements. First of all, the presented algorithm allows for
synchronous updating of neurons, and a parallel implementation on a multipro-
cessor computer is straightforward. Rigourous results from numerical analysis

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 359-364



may lead to an adequate adjustment of parameters such as the step size and
the slope 1=� of the transfer function. Also, the selection of the numerical
method is an open question. Those methods that preserve the �xed points
of the original di�erential equation, even if a large step size is selected, are
an interesting choice. All these techniques could be combined so that neural
networks become eÆcient optimization algorithms. If they are considered as
inferior, it should not be done before they have tried their best.

References

[1] S. Abe. Theories on the Hop�eld neural networks. IJCNN, I, 1989.

[2] J. Bruck. On the convergence properties of the Hop�eld model. Proc.
IEEE, 78, 1990.

[3] C. Gear. Numerical Initial Value Problems in Ordinary Di�erential Equa-
tions. Prentice-Hall, 1971.

[4] J. Hertz, A. Krogh, and R. Palmer. Introduction to the theory of neural
computation. Addison-Wesley, 1991.

[5] J. Hop�eld. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA, 79:2554{2558, 1982.

[6] J. Hop�eld. Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA,
81:3088{3092, 1984.

[7] J. Hop�eld and D. Tank. 'Neural' computation of decisions in optimization
problems. Biol. Cybern., 52:141{152, 1985.

[8] G. Joya, M. A. Atencia, and F. Sandoval. Hop�eld neural networks for
optimization: Study of the di�erent dynamics. Neurocomputing (accepted),
2000.

[9] P. Koiran. Dynamics of discrete time, continuous state Hop�eld neural
networks. Neural Computation, 6:459{468, 1994.

[10] MATLAB Function Reference. The MathWorks Inc., 2000.

[11] S. Mehta and L. Fulop. An analog neural network to solve the hamiltonian
cycle problem. Neural Networks, 6:839{881, 1993.

[12] M. Vidyasagar. Minimum-seeking properties of analog neural networks
with multilinear objective functions. IEEE Trans. On Automatic Control,
40(8):1359{1375, 1995.

[13] L. Wang. On the dynamics of discrete-time, continuous-state Hop�eld
neural networks. IEEE Trans. On Circuits and Systems-II, 45(6):747{749,
1998.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 359-364




