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Approximation capabilities of single non-linear layer networks, that feature a
single global minimum of the error function are addressed. Bases of different
transfer functions are tested (Gaussian, sigmoidal, multiquadratics). These
functions are orthogonalised in an incremental manner for training and restored
back to the original basis for network deployment. Approximation results are
given for a benchmark ECG signal. Results of incremental training with basis
orthogonalisation are also shown for 2D approximations.

1. Introduction

Multilayer perceptron (MLP) networks, of feed-forward type, are the most popular
artificial neural networks structures for generating many input—many output
nonlinear mappings. In particular, it has been proved that networks containing at least
one layer of continuous discriminatory functions (e.g., sigmoidal functions) are
capable of approximating any continuous mappings. Nevertheless, networks with
more than one hidden layer are of frequent use that, in some applications, outperform
single-hidden layer networks, i.e., yield more precise mappings for a lower overall
number of nonlinear nodes. For such networks, however, the training problem
becomes a complicated nonlinear optimisation task, defined in a multidimensional
space, since the cost function assumes an equation of nested nonlinear expressions:

P

where: y — is the approximated function, f{-) — is the network generated approximation
of y, w' — are network connection weights in H-th hidden layer (counting from the
input), and ¢(-) — is the transfer function of an individual neural node (usually of
sigmoidal type). Search for the optimum weight set w* that minimises &w) can only
be performed in an iterative manner, e.g., of gradient decent type or other procedures
like evolutionary algorithms. These algorithms, however, can be trapped in local
minima of the error function (1). Thus, it is recommended to repeat the training runs
many times (each time starting from different weight space location wy) and choosing
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best w* that minimises (1). Such training schemes significantly increase demand for
computing power and are not practical in embedded systems or real time processing
tasks.

In this study we concentrate our interest on networks with a single nonlinear layer,
that have strong theoretical background in linear approximation theory, thus are
simpler to design, analyse and optimise for applications at hand.

2. 1% layer networks

Feed-forward networks with a single non-linear hidden layer and a single linear
output layer are frequently called “ ]é layer networks”. In the language of function

approximation theory such an approximation scheme is termed discrete linear
approximation, since an unknown function y: RY— R is approximated by a function
£, being a linear span of a set of m basis functions @,(-): R"— R, k=1, 2, ..., m. This
type of mapping is given by:

S (x)=D Wiy (x)+wp (2)
k=1

For such a network the approximation task consists of the following steps:
i. provide samples {(Xp y;)e RN % R}i . i.e., P training pairs of an unknown
function y belonging to some normed space of functions Y,

ii. define a family @ of basis functions ¢.c @,
iii. use appropriate number of m basis functions from family @ and find a

corresponding set of weights wy, k=1, 2, ..., m so that the error £ = H f— fm

>

, (e.g., Euclidean) between an

i.e., the distance & according to a norm ‘

unknown function f'and its estimate f,, falls within an acceptable margin.

Searching for network weights that minimise the error is a linear optimisation
problem with m unknowns and P linear equations (so called normal equations). For an
approximation problem P>m (for P=m we have an interpolation) the task of finding
optimum w is overdetermined and can be solved either by calculation of matrix
pseudoinverse or by an iterative error-correction learning rule such as the LMS
algorithm. Note, that for linear optimisation, the problem of local minima does not
exist.

In step (ii) of the algorithm, the family @ of basis functions ¢ is predetermined
(i.e., the type of basis functions and their number). Special families of basis functions,
termed wavelets, have been devised, mainly for signal processing applications [1]. A

wavelet is a function e I’ (R) with zero average that satisfies certain admissibility
conditions (e.g., sufficient decay of its modulus). A family of functions

v, = }V(H) can be obtained by translating and dilating a prototype wavelet
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¥,,- Approximations using discrete wavelet decomposition (that use dyadic scaling
for discrete values of the dilation factor) are suitable predominantly for signal
processing applications, and generate redundant representations. They can be
considered as a special case of ]é layer neural networks. The latter, however, as

opposed to the wavelet basis, do not impose strong conditions on the basis transfer
functions and can find applications in data classification applications [2].

3. Orthogonalisation of network basis functions

Suitability of the employed basis functions, can only be verified after
determination of an optimum weight set in (2), that requires OPm’ + 5m’)
summations and multiplications (matrix pseudoinverse). Search for best basis
involves multiple computation of weights. This computing cost can be dramatically
reduced if the set of basis functions is orthogonal. Then, the optimum weight vector
can be calculated from a simple formula [3]:

ro| L) L) (S, 3)

where <,> is the inner product operator defined for discrete samples of approximated
function f* and orthogonal functions u;. Orthogonality means that <”f:u,-> #(0 fori=j

and zero otherwise. More importantly, for a constructive training scheme, each new
orthogonal basis and its corresponding weight is computed independently from other
weights that were determined earlier (see (3)).

n

The Fourier series, with complex exponential functions :{ 1 e jnx} (neZ and
7

Z is a set of integers) is an example of a set of orthogonal basis functions defined in
L*(-7 7). Thus, Fourier series can be seen as a special case of ]é layer neural

network. Fourier basis have excellent concentration is spectrum domain and poor
concentration in spatial (or time) domain. At the other extreme, there is an orthogonal
basis of Dirac distributions {&x-n)}, ne Z that feature excellent space concentration
and poor frequency concentration. Between these two extremes there is a special
basis, i.e., the Gaussian basis. Interestingly, Gaussian kernel posses best joint
location-frequency resolution and meets with equality the uncertainty bound

Aan)Zé set by Heisenberg, i.e., the area of the space-frequency box AxAw,

defining function joint resolution reaches minimum. Gaussian kernel is the most
frequently used transfer function in radial basis functions (RBF) neural networks.

Unfortunately, Gaussian basis and other families of transfer functions like general
multiquadratics and thin-plate splines, or sigmoidal functions are not orthogonal. The
following theorem provides functional equivalence between linearly independent
basis and orthogonal basis defined in a normed space of functions [3].



Theorem (due to Schmidt): For a set of linearly independent functions {¢i }l’":l defined
in a Hilbert space, there exists a set of orthogonal functions {“,}L such that any
Junction u, is a linear combination of {(p[}il and vice versa, any @, is a linear
combination of orthogonal functions {u,}"" .

This theorem, has an important practical application for 1% layer neural network

constructive training methods. Earlier, we have proposed a procedure for training
RBF networks in which training is carried out on orthogonal basis, that afterwards is
restored back to the original basis [4, 5]. Considerable savings in computing time

have been gained. Here, we propose and test the following procedure for training 1%

layer networks comprising various transfer functions (i.e., that are not limited to basis
of radial symmetry):

1. select the family of basis functions (e.g., sigmoids) and start from the network
containing a single basis function,

2. orthogonalise the current basis function (using the Gram-Schmidt
orthonormalisation procedure),

. compute the corresponding weight (using (3)),

. check the network error,

. if the error is too large add new basis and go to step (2), otherwise go to step (6),

. use the Schmidt’s theorem to recompute weights for the original basis and stop.
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In fact, a modified version of the standard Gram-Schmidt procedure giving better
numerical stability, in which orthogonal rather than orthonormal basis has been used
in the proposed procedure. More details are given in [5].

We provide a set of computing examples that illustrate shapes of transfer functions

obtained by means of orthogonalising linearly independent basis for 1% layer neural

networks. For one dimensional approximation examples, three families of basis

— and two radial

functions are considered: the sigmoidal function (x)
- 1477060
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functions, namely the Gaussian ¢(r)=e 20° and multiquadratics function
o(r)= (bz + rz)“, 0O<a <1, where » = Hx - ’H and ¢ is the centre of radial symmetry. For

a 2D approximation example the Gaussian is used, that is a separable function, i.e., it
can be expressed as a product 1D Gaussians defined separately for each of the
dimension. An overview of different basis functions is given in [2].

3.1 ECG signal approximation

A single cycle of an ECG signal is used as a benchmark function for showing
approximation capabilities of 1% layer neural networks containing different basis.
The proposed orthogonalisation procedure is used for network training in which the

number of basis is incremented one at a time. Fig. 1 illustrates example shapes of the
orthogonal functions obtained for ECG signal approximation task.



Fig. 1. Families of orthogonal functions obtained from two different basis functions: sigmoidal
functions (left panel) and multiquadratics functions (right panel). Thick solid lines correspond
to the first (non-orthogonalised) basis used in the incremental approximation scheme.

In Fig. 2 graphical representation of the approximation precision obtained by
means of orthogonalised basis is shown. Table 1 collects approximation results for the
tested basis functions. Note, that all three bases yield very good and similar
approximation accuracy of which the best is obtained for multiquadratics basis.
Parameters of the defined basis functions, that were used are: =50 for the sigmoid,
0=0.05 for the Gaussian, and b=0.1, o=0.2 for the multiquadratics. Centres of the
radial functions and thresholds for the sigmoidal functions were selected by means of
the golden ratio partition of the interval (0, 1), i.e., ¢, =k-z—trunc(k-z), where

_5-landk=1,2, ..., m.
2
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Table. 1 Approximation results

Basis (m=30) | Mean square error
mutiquadratics 2.15-10°
gaussian 2.25-10"
sigmoidal 4.21-10°*
-0.2 ‘ ‘ , ‘
0 0.2 0.4 0.6 0.8 1
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Fig. 2. ECG signal (solid line) and its approximation
(dotted line) obtained by means of one hidden layer
network of 30 multiquadratic basis functions.

3.2 Approximation in two dimensions

As a benchmark function a complicated interaction two dimensional function is
used [6]: f(x,,x,)= 1.9(1.35+e’*1 sin(l3(xl —0.6)2)(3””2 sin(7x, )) Its plot is depicted
in the left panel of Fig. 3.
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Fig. 3. An approximated two dimensional function (left panel) and one of the orthogonal
functions obtained from 2D Gaussian basis.

In the applied constructive function approximation scheme, 2D Gaussians were
added one by one with centres selected randomly on [0, /]X[0, /] domain.
Approximation accuracy of 9.91-107 has been obtained for 30 orthogonalised basis.
An example of a 2D function from the orthogonal set obtained from the Gaussian
basis is shown in the right panel of Fig. 3.

4. Conclusions

Universal approximation properties of ;! layer neural networks with non-
2

polynomial basis in the hidden layer have been demonstrated. In theory, networks
with more than one nonlinear layer can yield better performance for a lower overall
number of weights. On the other hand, incremental training scheme that includes
orthogonalisation of a single layer basis, enables fast, one shot computations of
network weights. Moreover, by using, the Schmidt’s theorem a functional equivalence
between network transfer functions and orthogonal basis is guaranteed. The
orthogonal basis set can be used for fast training and traditionally used transfer
functions (e.g., sigmoidal) can be used for network deployment.
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