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Abstract 
 
Multiplayer perceptrons or feed-forward networks are generally trained to 
represent functions or many-to-one (m-o) mappings. This creates a problem if 
the training data exhibits the property of many-to-many or almost many-many 
valued-ness because the model, which generated the data, was many-to-many. 
Therefore in this paper a modified feed-forward network and training algorithm 
is considered to represent a multi-valued mappings. The solution consists of 
adding another input to the standard feed-forward network and of modifying the 
training algorithm. This additional input will generally have no training values 
provided and an amended training algorithm is used to find its values.  
The modified feed-forward network and training method has been successfully 
applied both in representing the mapping implied by data generated by multi-
valued functions and in representing the mapping implied by data obtained 
from benchmark databases. 
 
Keywords feed forward neural networks, relations, one-to-many mappings, 
data segmentation, clustering, many-valued functions 

 
 
1  Introduction: relations versus functions in neurocomputing  
 
Multiplayer perceptrons or feed-forward networks have been trained to represent 
functions or many-to-one (m-o) mappings (Hecht-Nielsen ,1989; Lippman, 1987; 
Rumelhart, 1986; Smith, 1993; Werbos 1974). A function is a special kind of relation 
and since many-valued-ness corresponds to relations it is worthwhile to consider 
relations in general. A classic example of many-valued-ness in AI research is the 
Necker cube in which case two different object orientations are obtained from the 
same 2-dimensional image. Also the data stored in databases generally represents 
relations or associations between variables that are many to many (m-m).  
Given some of the data for a mapping between two data sets it may not be known 
whether the model which generated the data is m-o or m-m even though technically 
the training data provided is m-o since two unique outputs associated with two very 
similar inputs may actually be associated with the same input. (i.e. the two inputs may 
actually be two approximations of the same input). The model may be m-m and the 
training data produced by the model m-o and almost m-m. This aspect will not be 
known in advance.  
In (Uno, 1995; Hiraoka, 1998) it was demonstrated that the bottleneck network with 
feedback can learn many-valued functions. The authors studied the problem of 
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recalling the hand configurations required to grasp an object based upon its image. In 
(Hiraoka, 1998,1999) the relaxation method for recall described in (Uno 1995) is 
replaced by successive iteration. The authors of another paper (Tomikawa 1998) 
discuss a very similar method for using a recurrent neural network for approximating 
a certain version of o-m mappings. 
This paper is organized in the following manner. First comes an illustration of multi-
valuedness and the things that give rise to many-valuedness. Next is an overview of 
the structure and learning involved in a particular approach and also a detailed 
description of the learning algorithm. Experiments describing the results of applying 
this approach are then described.  The paper ends with a description of some of the 
problems with the method proposed here. 
 
 
2 An Illustration of Multivaluedness and its Sources 
 
It is possible, given certain one-dimensional training data, that the many or almost 
many-valued ness is due to the fact that the given data is produced by a model with 
say two or more independent variables while the data available for training is for only 
some of the independent variables and for the dependent variable. The training data 
may be o-m or almost o-m even though the source of the data with additional input 
was m-o. Figure 1 shows a model of many-valuedness which was due to the fact that 
the output is produced by three different functions. 
 
 

 

x f1(x) 

f2(x) 

f0(x) 

and 

 
 

FIGURE 1  Demonstration of m-m property due to having several functions 
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g(u,x) u,x 

f2(x)=g(2,x) 

f1(x)=g(1,x) 

f0(x)=g(0,x) 

or 

 
 

FIGURE 2 Changing m-m mapping to m-o mapping 
 
In the demonstration in Figure 2 we turn the m-m function into a m-o function by 
considering the subscript function identifier that plays the role of function identifier to 
be another independent variable with values from {0,1,2}. The 3 mappings ℜ n 

0f → ℜ ,  ℜ n 1f → ℜ ,  and ℜ n 2f → ℜ  giving rise to a m-3 mapping become 

the single mapping {0,1,2}×ℜ n 0g →ℜ . 
A specific example of the preceding is the case where one or more of the independent 
variables used for prediction is a nominal variable. Consider for example the data for 
predicting the age of abalone. (source: abalone data set in the machine learning data 
base found at http://www.ics.uci.edu/~mlearn/ MLRepository.html). The data 
generally is used to develop a function for predicting the age of abalone from physical 
measurements. The number of attributes is 8 with all but one being continuously 
valued. The remaining variable is nominal with values “male”, “female”, and 
“Infantile”. We can think of three prediction functions in this case, one for each of the 
values of the nominal variable. The nominal values can be thought of as function 
identifiers with a different function for each type of abalone. Without the nominal 
variable we have a model which is m-3 and training data which is almost m-3. There 
are three ages in the model for each combination of  values of the remaining 
continuously valued attributes. 
 
 
3 Structure and Learning for a modified feed-forward neural network 
 
Since a feed-forward network requires m-o data we have to define a way of dealing 
with the many-valued relational property of the data. The approach used here is to 
turn the m-m mapping into a m-o mapping by augmenting the inputs by one or more 
additional components. The additional component(s) are used to contain values to 
distinguish between the many values mapped to by a particular input combination.  
The network used for training consists of an input layer, an output layer and one 
hidden layer. The method used for training is the gradient descent method. The 
gradient of the output with respect to all unknowns is found by feeding the gradients 
forward as described in (Brouwer, 1997). This method is used rather than back-
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propagation (Werbos, 1974; Rumelhart, 1986) because it is very readily expressed in 
high level notation without requiring subscripts and is readily appended for use in 
determining the values for the unknown vector variable, u by gradient descent. The 
algorithm, which is easily generalized to many hidden layers is summarized below.  
“+/” is the summation operator which sums values over the first dimension. out(0)  is 
the output of the input layer of the network including u and out(2) is the actual output 
of the network. ∇  stands for gradient.  Following is the training algorithm. 

Algorithm for finding values for the connection matrices and the values for the 
unknown variable using gradient descent 

1. initialize  
W(k)   k = 1, 2 and u 
2.  determine gradients 
∇ W

(1) C =.+/(out(2) - d) * f ` (W(2)’ . (out(1),-1))*W(2) * “1_ f ` (W(1)’ . (out(0),-1)) * / 
(out(0),-1) 
∇ W

(2) C=.(out(2) - d) * f ` (W(2)’ . (out(1),-1)) * / (out(1),-1) 
∇ u C =. +/(out(2) - d) * f ` (W(2)’ . (out(1),-1)) * W(2). f ` (W(1)’ . (out(0),-1)) * k {. “ 1 
W(1) 
3. modify 
∆ W(k) =. - µ1 ∇ W

(k) C  k = 1, 2  
∆ u =. - µ2 ∇ u C  

 
W(i)’ is W(i)  i=1,2  with an additional column to include  the bias terms. out(i) , i=1,2 
are appended with –1 to multiply the bias terms.  W(2) * “1_ f ` (W(1)’ . out(0),-1) 
means that each row of W(2)  is multiplied by the vector  f ` (W(1)’ . out(0),-1) .  k {. “ 1 
W(1) is made up of the first k columns of  W(1). 
The gradient of u is used to determine u if it is desirable to consider all possible real 
values. If we think that there is only one additional variable with a small number of 
possible values, as in the case following, we may select the value out of a set of 
discrete values that gives the smallest absolute value of error for the training element 
given the connection matrices learned so far.  
 
 
4 Experimental studies 
 
In this section, we show the results of carrying out a series of numeric simulations to 
show how the network can learn and also show the impact on learning performance of 
having the separation variable. The performance measure, Q, is the root mean square 
or square root of the average of the squares of the individual errors.  
The source of the data is the abalone data set mentioned previously. For training, 5 
units in the hidden layer were used. The training performance in terms of rmse versus 
training time in epochs is as shown in Figure 3. The nominal feature is purposely left 
out of the training data to make it almost m-3. Three values from {0,1,2} were used 
for the unknown input.  
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FIGURE 3 Two learning curves with and without additional input 

 
Figure 3 above clearly shows a marked improvement in training due to adding an 
input variable using 3 values. Further learning was tried on artificially generated data 
including bi-variate normal distributed data, data generated from a two variable 
exponential function, and data generated from a 3 variable length function.  In these 
cases the function was made almost m-m by dropping a variable. In case of the length 
function gradient descent was used to obtain values for the unknown input variable. 
The results obtained again were excellent. Lack of space prevents their coverage here. 
 
 
5 Concluding remarks 
 
Data presented to a feed-forward network for learning may not be learnable without 
some attention given to the number of inputs for the feed-forward network. The data 
as presented could be m-m, which is not appropriate for a feed-forward network that 
is intended to represent an m-o mapping. It is quite possible that the data was 
generated by a model consisting of two input variables with the data presented for 
training consisting only of the values for one of the dependent variables. This paper 
has shown that the feed-forward network and its training algorithm can be modified to 
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include another input variable with values restricted to {0,1} so that the network can 
distinguish between two different output values corresponding to one value for the 
input provided. Thus the many-valued-ness is reduced to single-valued-ness.  
We may now have a network to represent an m-m mapping but it only represents a 
mapping and not truly a relation because the mapping represented is uni-directional. 
We should be able to go into both directions during retrieval. This suggests 
development possibly of another network. 
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