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Abstract. In this contribution we give a short overview about actual
developments in hybrid systems combining artificial neural networks and
evolutionary algorithms. In more detail we highlight such systems which
take the self-organizing maps as neural architecture into account.

1. Introduction

In the area of Computational Intelligence several approaches are established
for solving complex computational tasks which are inspired by nature. Main
directions are artificial neural networks, evolutionary or genetic algorithms,
Fuzzy-approaches and other. The applications range from clustering, pattern
recognition, optimization and other to reasoning, data mining and knowledge
discovery. A large number of specialized algorithms were developed for specific
tasks. However, often the tasks require to combine several approaches which
then are called hybrid systems. In this paper we want pay attention to such
systems which combine evolutionary/genetic algorithms with artificial neural
networks.

The article is structured as follows: In sec.2. we shortly review the actual
state in development of hybrid systems combining neural and evolutionary
paradigms. After this, in sec.3., we focus on hybrid approaches combining
self-organizing maps and evolutionary algorithms.

2. Neural Networks and Evolutionary Algo-
rithms

Artificial neural networks (ANNSs) attempt to replicate the computational
power of biological neural networks and should lead to algorithms with some
of the cognitive abilities that biological organisms possess [43]. The basic char-
acteristics are adaptability, speed (due to the massive parallelism), robustness,
ruggedness and optimality with respect to certain criteria. The various network
models differ in network structure, neuron (node) characteristics, learning dy-
namic regarding to their application tasks.

Evolutionary algorithms (EA)! are stochastic search algorithms which are
adapted from principles of biological evolution working simultaneously on a

11n literature one distinguishes several types of genetic/evolutionary approaches. Besides
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large number of potential problem solutions. These solutions are called indi-
viduals. The optimality of the individuals for a specific tasks is defined by a
fitness function which plays the role of the assessing environment. The pool of
individuals form a population which may be divided into interacting subpopu-
lations. Comprehensive foundations of EAs are [37] and [44].

The combination of neural networks and EAs offers new possibilities to
increase the power of adaptive approaches. Two main directions can be iden-
tified: the first one is to apply EAs to optimize a neural network whereas the
second one deals with the transfer of methods from neural networks onto the
frame work of EAs. As pointed out in [43] the latter case is not yet explored.

The application of EAs for performance improvement of neural networks has
a long tradition (for a compact overview we refer to [17],[37],[43],[62],[63]). The
most developments consider the optimization of the network topology which is
a crucial point in network design [24]. The hardest limitations thereby is the
large training effort: in each generation step of the EA all individuals repre-
senting an neural network have to be trained according the respective learning
algorithm. Frequently, the backpropagation network is investigated because
its large number of applications [38],[48],[50],[64]. However, especially for this
network type the high learning effort is well known [24]. But also other net-
work designs where developed using evolutionary algorithms: recurrent neural
networks [2], general asymmetric neural networks [8], high ordered neural net-
works [14], cellular neural networks [41], Hopfield network [42], sparse feedfor-
ward neural networks [49] or radial basis function networks [61]. The widely
ranged self-organizing map was also considered. We will concentrate on this
network type in the next section, separately.

Beside the topology (structure) design of neural networks there exist a few
number of papers to application of evolutionary algorithms to learning in neural
networks [29],[35],[53],[54]. The usage of EAs for training may be helpfully in
avoiding local minima in learning dynamics as pointed out in [53]. Yet, a general
advantage is not recognizable because of the fine tuned neural learning schemes.
In general, EAs gives an advantage only if specialized learning algorithms for
global energy function minimizations are note available [3],[44].

3. Evolutionary Algorithms and
Self-Organizing Maps

Let us now consider in more detail hybrid approaches which explicitly combine
EAs with Self-organizing maps (SOM). In this area we find all directions of
combinations: evolutionary design of SOMs, evolutionary weight adaptation
and application of SOM learning strategies for increasing of convergence speed
in EAs. First, for clarification we shortly introduce the basic concepts of self-
organizing maps:

3.1. Self-Organizing Maps

Self-organizing maps [30] as a special kind of neural maps project data from
some (possibly high-dimensional) input space V C R”Y onto a position in some

the differences in detail we denote all these algorithms in this paper as evolutionary algo-
rithms. For a detailed description we refer to [37].
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output space (neural map) A, such that a continuous change of a parameter of
the input data should lead to a continuous change of the position of a localized
excitation in the neural map. This property of neighborhood preservation de-
pends on an important feature of the SOM, its output space topology, which
has to be specified prior to learning. Usually the topology is chosen hypercu-
bically. This can be cast in a formal way by writing the output space positions
as r = (i1,12,13, ..., ), 1 < ix < ng with N = ny x ng X ... X n; where ng,
k =1,...,j is the dimension of A (the length of the edge of the lattice) in the
Et" direction .2 Associated with each neuron r € A, is a weight vector, or
pointer, w, in V. The mapping Wy,_. 4 is realized by a winner take all rule

Uy 4V s=argminl||v— wy| (1)
reA

whereas the reverse mapping is defined as ¥ 4,y : r — w,. The two functions
together determine the map M = (Uy_, 4,V 4 ) realized by the SOM net-

work. All data points v € RV that are mapped onto the neuron r make up

its receptive field .. The masked receptive field of neuron r is defined as the
intersection of its receptive field with V :

Qe ={veV:ir=Up_4(v)}. (2)

Therefore, the masked receptive fields €2, are closed sets. All masked receptive
fields form the Voronoi tesselation of V. If the intersection of two masked recep-
tive fields €., €, is non-vanishing we call Q, and €, neighbored. The neigh-
borhood relations form a corresponding graph structure Gy, in A: two neurons
are connected in Gy if and only if their masked receptive fields are neighbored.
The graph Gy, is called the induced Delaunay-graph (See, for example, [36] for
detailed definitions). Because of the bijective relation between neurons and
weight vectors Gy, also represents the Delaunay graph of the weights.

To achieve the map M, SOMs adapt the pointer positions during the pre-
sentation of a sequence of data points v €V selected from a data distribution
P (V), as follows:

AWy = €hpg (V— W) . (3)

hys 18 the neighborhood function, usually chosen to be of Gaussian shape:

2
r—s
hys = exp <—| 202” ) (4)

Note that h.g is dependent on the best matching neuron (1).

Topology preservation in SOMs is defined as the preservation of the continu-
ity of the mapping from the input space onto the output space, more precisely
it is equivalent to the continuity of M between the topological spaces with
properly chosen metric in both A and V. For lack of space we refer to [59]
for detailed considerations. The topology preserving property can be used for
immediate evaluations of the resulting map. Topology preservation also al-
lows the applications of interpolating schemes such as the parametrized SOM

20ther spatial arrangements are also possible, which can be described by a connectivity
matrix.
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(PSOM) [47] or interpolating SOM (I-SOM) [19]. A higher degree of topology
preservation, in general, improves the accuracy of the map [6]. There exist a
lot of measure to determine the degree of topology preservation. An overview
is given in [5].

3.2. Performance Improvement of SOM by Evolutionary
Algorithms

3.2.1. Structure Adaptation in SOM by Evolutionary Algorithms

A crucial but strongly demanded feature of SOM is the above mentioned prop-
erty of topology preservation. However, if the shape of the input space V does
not match the structure of the lattice A violations of topology preservation
are inevitable [59]. Several extensions of the usual SOM were developed to
overcome this problem: growing cell structures (GCS) [18], the growing SOM
(GSOM) [7] etc. The disadvantages of these algorithms consist in slowly in-
creasing number of neurons (GCS) or remaining hypercube structure (GSOM).

Therefore, EAs were applied to structure optimization [21],[45],[46]. For
this purpose the lattice structure of A is defined via a connectivity matrix G 4
representing the graph structure, i.e. G4 (r,r’) = 1 if and only if r and 1’
are connected in A elsewhere G4 (r,r’) = 0. Hence, the indices of neurons
only define the positions in the neuron space. Now, each individual in an EA
scheme codes one possible connectivity graph. The EA generates new graphs,
the respective SOMs are trained according the usual learning rule (1) and
assessed by a topology preservation measure serving as fitness function. As
a remaining problem we have the large computational effort due to the time
consuming network learning. A reduction of time can be achieved by usage of
parallel techniques.

3.2.2. Evolutionary Weight adaptation

Other authors investigate the weight adaptation by evolution replacing the
original learning dynamic (1). As pointed out in by KOHONEN in [30] one can
take the learning dynamic as an evolving system. We know two independently
developed but nearly identical realizations [31] and [40] the first one published
by KOHONEN itself. Originally, the evolutionary SOM is designed for hyper-
cubical lattice structures. However, it can easily be generalized to arbitrary
graph structures G 4.

Let us denote by Sg (r) a subgraph of G 4 assigned to certain nodes r such
that for a given radius R the nodes r’ with distance dg, (r,r’) < R belong to
Sgr (r). Now the evolution for a given input v is realized by the following steps:

1. determine the winning neuron s according 1 and the respective subgraph

Sk (s)
2. pick up randomly n (R) nodes as population for EA

3. perform one evolution step (recombination/mutation and selection) with
(1) serving as fitness function

Thereby, R and, hence, n (R) decreases during map evolution as in the
original SOM the neighborhood range o. The original learning rate € can be
taken as a scaling value of the variance for the mutation.
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3.3. Advanced EA-schemes inspired by SOM

3.3.1. Convergence Improvement by Neighborhood Related Ge-
netic Operations

The collective neighborhood oriented learning scheme of SOMs can be trans-
ferred to the evolution process in EAs. The individuals are now placed on
lattice positions according to the SOM approach. In the approach provided
by HUHSE a new genetic operator is introduced, called neighborhood attraction
operator, which carries out a directed variation of the individual in direction
of its fittest neighbor [27],[28]. The resulting EA dynamic is accelerated in
comparison to usual variation by traditional (random) recombination.

ToTH&LORINCZ also incorporated neighborhood informations into the EA
dynamic [55]. The specific task was to find simultaneously the maximum of a
family of parametrized functions f, (x) : #” — R, whereby p € P CR” is a
continuously varying parameter labeling for the different functions. In other
words: we are seeking for mapping X (p) : R™ — R” such that fp (x) is max-
imum for each value p. Now the authors suggested to partition the space P
into regions P; using a SOM and assigning to each region a subpopulation of
individuals for EA to maximize the respective function f,, (x). Hence, a neigh-
borhood relation between the subpopulations is induced by the SOM structure.
Thereby a recombination of individuals between neighbored subpopulations is
allowed which again correspond to a neighborhood oriented collective adapta-
tion. However, because of the unknown structure of P and the corresponding
difficulties in topology preserving mapping by SOMs a better way would be
to use the topology representing neural network (TRN) [36]. The TRN auto-
matically determines the topological structure in P induce the neighborhood
relations between the subpopulations.

3.3.2. SOM-like migration for subpopulations

In the previous section we only considered the convergence speedup result-
ing from the consideration of (nearest) neighbored individuals/subpopulations.
This scheme can be further generalized:

We now consider a multiple subpopulation approach with a set II of sub-
populations II; also known as island model [37]. In the present approach the
basic new point is that the set II of subpopulations is arranged on a topologi-
cal structure ). Multiple subpopulation approaches are extensively considered
by CANTU-PAZ [10],[12],[11],[13], and others [37],[39],[33],[44]. Usually, in the
most approaches () is to be chosen of simple two-dimensional shape in agree-
ment with biological migration systems (island model). During the evaluation
individuals can migrate to subpopulations within a certain fixed neighborhood
range according ). The small migration rate is always constant. Thereby, mi-
gration means in our approach that an individual of one subpopulation visits
an other subpopulation for a short time (a few generation steps) to share the
genetic information during this time with the members of the visited subpop-
ulation 3.

3Yet, there are different realization of migration reported. An other way is to substitute
members from a subpopulation by the migrating individuals. For an analysis of this kind of
migration we refer to [12].
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Figure 1: Exemplary plot of the neighborhood function h;« (¢, k) from eq.(2.2)
determining the migration scheme in dependence on time ¢ and neighborhood
rank rl(ﬁ ; from eq. (2.1) for a simple ring topology. Here, €, = 0.
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We favour a dynamic neighborhood dependent migration scheme. Let be
given a structure graph Gp, representing the topological relations in Q. To each
node 7 in Gg is assigned a subpopulation II;. Hence, we can define the rank of
neighborhood for an actually considered subpopulation II;+« to another subpop-
ulation IT; according to the topological order in II as rank of neighborhood:

T?Z,k = rank (IT;+, 1T, Q) (5)

with rank (IT;+, 1T, Go) is defined as the minimal path length in the graph Gq.
Now the migration scheme can be implemented locally based on the neigh-
borhood relations between the subpopulations determined by a neighborhood
function h which is motivated by the neighborhood function in SOMs [58]. The
neighborhood function is decreasing in both neighborhood rank and time:

hi« (t,k) = (1.0 — €p,) - exp (—W) +ep (6)

with a small positive constant €. In this way the degree of neighborhood be-
comes dynamically. Because of h;« (¢, k) € (0,1] we immediately can interpret
hi+ (t, k) as a probability for migration of an individual of the subpopulation
II,. into the actual evaluated II;». During the evaluation of a certain subpopu-
lation IT;+ the neighborhood function A is applied to determine the number of
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visiting individuals from each other subpopulation. At the beginning ty of the
evolution process the range of the neighborhood nearly comprises the complete
set of subpopulations and decreases exponentially during the time determined
by the neighborhood range

gp (t) — 0 (7)

t—o0o
in (6) (see Fig. 1). In this way, o, determines a characteristic scale for the
range of the information flow.

Following this approach one can take the individuals of all subpopulations at
the beginning as an uniform population which performs a first rough adaptation
process. During the further development the various subpopulations become
more and more separated from each other and, hence, search in different regions
of the solution space. On the other hand, €; in (6) preserves a remaining
probability for migration. In this way one has a non—vanishing information
flow through the topological ordered set II of subpopulations. If one chooses
h;« (t, k) = h;« (k) independent on time ¢ and, furthermore,

h* for k£ < k*
his (k) = { (8)

0 else

for a certain fixed k* and h* € (0,1] we can identify k* as the degree of neigh-
borhood in the Cantu-Péz early approach [10] whereas h* is the now constant
migration rate. In later approaches Cantu-Paz also introduced a time depen-
dent degree of neighborhood which is adapted according to the fitness of the
individuals within the subpopulations [11]. However, the determination of this
value is computational expansive. Hence, our above introduced neighborhood
function avoids this computational costs.

This approach of first rough adaptation of neighboring subpopulations to-
gether with a more fine tuning in the further process by more and more but
not completely independent subpopulations arranged on a topological struc-
ture according to a neighborhood function is an analogy to the SOM-learning
strategy: a first rough adaptation of the neuron weights takes place changing
to a precise adjustment simultaneously with loosing the strong neighborhood
conditions in the lattice [59].

As shown in the applications below, this dynamic migration scheme acceler-
ates the adaptation process, especially, if the search space possesses many local
minima [37] (see sect. 3.3.2.). Moreover, if a multiple processor system for
instantiating is used in parallel computing, the communication overhead can
be drastically reduced in comparison to the overall communication scheme.
Thereby, we underline two important but different speed up factors: The first
one is that the communication rate is reduced according to the decreasing mi-
gration probability determined by (6) and (7). On the other hand, as mentioned
above, only a local communication takes place if the adaptation process is in the
long convergence phase because of the exponentially decreasing neighborhood
range op. Hence, the several processors can communicate locally only with
topological neighbors which reduces the communication overhead [13],[51],[60].

Application of the EA with SOM-like migration for clustering tasks
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Clustering of dissimilarity data in psychotherapy research In the
following we demonstrate the application of EAs for clustering of categorical
data in psychology research. Thereby we will study some properties of the
above introduced migration scheme. Beside the migration scheme here we also
have to pay attention to the aspect of a proper choice of the fitness function for
clustering of dissimilarities. The clustering of dissimilarities is recently studied
in [9],[22],[26],]20] offering new perspectives for application. A respective energy
function was found [56]:

F= M ln(crnax M M Comax Uj U, v
e o (e ©)

=1 k=1 v=1 Do

with p, = Zﬁl u; /M the normalized percentage of the data in that cluster
and M the number of data and explicitly taking the number of clusters into
account. The values D, j, are the dissimilarities between the data points. The
u; -values are the (fuzzy) cluster assignments. F serves as a cost function and
has to be minimized. As pointed out in [26],[20] F is independent on non-
symmetric dissimilarities and permutations of the cluster indices. Moreover,
the cluster assignments u; ,, are distributed according to the Gibbs distribution

P(F)=exp (—%m)whereby T plays the role of a temperature, and F (F)

is the free energy. Yet, because of the statistical dependence of the assignments
the Gibbs distribution P (F) can not be exactly rewritten in a factorized form,
however a mean field approximation and corrections to the assignment correla-
tions has been derived [26]. As it shown in [20] it is possible to minimize F by
simulated annealing. Yet, it is difficult to generate a careful annealing scheme,
because the of the large number of local minima. A possibility for convergence
improvement is the application of evolutionary algorithms to optimize F [57].

In social science and psychology often categorical data have to be clustered
which some times can be transformed into dissimilarity data [1]. As an exam-
ple we consider the most frequently used method for acquisition of structures
of interpersonal relationships in the area of psycho—dynamic psychotherapy re-
search: the *Core Conflictual Relationship Theme’ (CCRT) [34]. The method
investigates short stories (episodes) about relationships which are often re-
ported by the patients in their therapeutic sessions. These episodes are coded
in components wish of the subject, response of the object and response of the
subject using a standardized category system. We have s@». . = 34 standard
categories Sy € S™ to classify the wishes, si7, = 30 categories S7° € 8™
for encoding the response of both the object and subject [15], respectively.
The categories are collected in ¢¥, . = 8 clusters C}¥ € C¥, c/%,, = 8 clusters
Cr? € C™ and ¢, = 8 clusters C]° € C™ according their meaning [4]. Sev-
eral considerations have shown that the used scheme of assignment still leads
to unsatisfactory reliability rates because the cluster are not well separated [1].
For solving the re-clustering problem of standard categories at first we deter-

mined the similarities between the standard categories S, S3’ on the basis of

their (symmetric) conditional probabilities p* (i | j) obtained from an external
study [1] (in analogy p™ (i | j), p"® (i | j) for the responses of object and sub-
ject). Now the reclustering can be done as a clustering of proximity data using
EAs as outlined above.

For comparison we computed F according to (9) for the original clusters
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F F Cmax
database original EA EA
clusters clusters clusters
pPv 6.88 6.24 10
pPe 6.28 6.16 9
P 6.16 6.09 9

Table 1: Values for the weighted concordance coefficient & and the fitness
function F according to the original clusters and the EA generated solutions.

C*, C" and C"™. Applying F from (9) as fitness measure in the EA we result
cluster solutions with higher number of clusters as depicted in Tab. (1) and
considerable better fitness values. We used in our computations p,; = 400
individuals which were evenly distributed onto s = 10 subpopulations. We
trained the ensemble during ¢, = 5000 time steps. According to the proposed
SOM-like migration scheme the subpopulations were arranged on a topological
structure in the present application simply chosen as a ring. The characteristic
time scale for decreasing the neighborhood between the subpopulation was
defined as linear shrinking of oy (¢) in (6) with 04 (0) = 5 and o (tmax) =
0.2. The remaining probability was €, = 0.01. The parameters were chosen
in agreement with experiences in agreement with the adaptation dynamic in
the neural network model [16]. Thereby, the initial o-value is related to a
quasi single big population whereas the final value corresponds to a migration
between neighbored subpopulations on a small level. However, further studies
should investigate the adaptation regime of these parameters with respect to
the dynamic of the fitness within the subpopulations.

To study the influence of the parameter choices in the SOM-like migration
scheme we considered several regimes of parameter cooling for o} exemplary in
clustering of §*. The results are summarized in Fig. 2. In the first regime a)
the value oj, always was kept constant on a zero level which means a complete
separated set of (relative small) subpopulations leading to a slow convergence
and bad fitness value because of the small diversity within the subpopulations
and the non-existing information flow all the time. In regime b) again the
value 0}, always was kept constant but now on a high level: o, = 3. Hence,
all subpopulations can be taken as a large single population. This accelerates
the adaptation process especially in the first rough adaptation phase whereas in
the final phase the tendency to homogeneity prevent good optimization results.
In contradiction to regime b) in the regime c) o}, was on a low level o), = 0.2
but again chosen to be constant. In opposite to a) the non-vanishing informa-
tion flow leads to significant improvements in the last phase of the adaptation
whereas the beginning is indicated by minor improvements as in a) but in con-
tradiction to c). The last curve d) clearly demonstrates the advantages of the
SOM-like regime of a decreasing oy, (t) with the above used parameter choices
o, (0) = 5 and o, (tmax) = 0.2. Finally, we can state that the SOM-like migra-
tion scheme generated in neighbored subpopulations cluster solutions which are
judged by psychotherapists as similar [32]*. However, a mathematical proof of

4This observation is not surprising from the view of neural network approach. However,
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Figure 2: Development of the fitness of the best individual for mutiple sub-
population systems with different neighborhood range cooling strategies. (For
further explanations - see text.)

this fact is difficult because of the complicate structure of the fitness function
but should subject of further considerations as well as an improvement of the
fitness function.

Application in VLSI model partitioning for logic simulation For
the logic design of whole microprocessor structures time-extensive cycle-based
simulation processes are necessary. Time spent for simulation can be drastically
reduced using parallel simulation based on model partitioning which can be for-
mulated as a combinational optimization problem characterized by a complex
cost function [23] which estimates the run-time of one parallel simulation cy-
cle of the corresponding hardware model parts. This cost function has to be
minimized to reduce the expected parallel simulation time [25].

To achieve better partitions in shorter time we have parallelized the SOM-
like EA. The migration is implemented by nonblocking Point-to-Point com-
munication in the frame of the Message Passing Interface [51]. Here, the
parameters was chosen again as in the above application, i.e. o5, (0) = 5,
0h (tmax) = 0.2 and €5, = 0.01.

it is in contrast to the investigations explained in [13].
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Experimental results are given for an IBM S/390 processor model which is
partitioned into 15 blocks via the STEP pre-partitioning [23]. At the second
hierarchy level three different EA strategies are realized with the parameters
Lanl = 294, A = 700 in each run. A sequential one-population EA is opposed
to two parallel multiple subpopulation EAs each consisting of s = 7 subpop-
ulations, i.e., i = 42, A = 100 for each subpopulation which corresponds to a
selection pressure of p ~ 2.4. We compare the SOM-like migration scheme with
an all-to-all communication scheme where the communication effort is much
higher than for the SOM-like case [52]. Considering the partitioning effort for
the multiple subpopulation approach, in Fig.3 the fitness of the best individual
is plotted over the time ¢p., spent for the EA partitioning.

45 L T | T | T | T | T ]
<@ — sequential ]
o L Cu i
3 40 - l‘\_ . — — parallel: all-to-all commun. ]
E L H\ — -—-- parallel: SOM-like migration | ]
= e L oL 7
w 35 N \ \,‘ ]
E . :
» C \ —_ i
$ 30 __ \_ ~ ~ . —_
£ r T — .. T~ — ]
. 25 B 1 I 1 I 1 I 1 I 1 ]

0 100 200 300 400 500

partitioning time (a. u.)

Figure 3: Fitness of the best individual of all subpopulations comparing a
sequential run with two parallel ones in dependence on the partitioning time
tpart measured in arbitrary units (a. u.).

Parallel partitioning drastically reduces the partitioning time because the
partitioning effort is distributed to 7 processors. The fitness of the best individ-
ual significantly faster decreases than in the sequential case. But the all-to-all
communication scheme is accompanied by a high communication overhead. Us-
ing our SOM-like migration approach this communication effort can be reduced
in such a way that better individuals (partitions) are obtained in shorter parti-
tioning time tpar¢. So, in the example discussed here an estimated run-time of
27 ms per cycle (fitness) is reached in the half of the partitioning time compar-
ing to the all-to-all communication scheme which is in agreement with results
obtained in [13]. Although the individuals of our initial population are al-
ready equipped with expert knowledge and not randomly produced, EAs yield
a reduction of estimated run-time from =~ 44 ms down to 27ms (see Fig.3).

4. Concluding remarks

We reviewed the actual development in hybrid systems for combination of
ANNs and EAs. The most publications deal with ANN optimization with
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respect to the network topology while weight adaptation is not expansively
considered. For the backward direction we can state some recently developed
approaches incorporating neural network paradigms of SOMs into evolution
dynamic of EAs.
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