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Abstract. Living creatures improve their adaptation capabilities to
a changing world by means of two orthogonal processes: evolution and
lifetime learning. Within Arti�cial Intelligence, both mechanisms in-
spired the development of non-orthodox problem solving tools, namely
Genetic and Evolutionary Algorithms (GEAs) and Arti�cial Neural Net-
works (ANNs). Several local search gradient-based methods have been
developed for ANN training, with considerable success; however, in some
situations, such procedures may lead to local minima. Under this sce-
nario, the combination of evolution and learning techniques, may lead to
better results (e.g., global optima). Comparative tests on several Ma-
chine Learning tasks attest this claim.
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1 Introduction

The remarkable adaptation of some living creatures to their environments
comes as a result of the interaction of two processes, working at di�erent time
scales: evolution and lifetime learning. Evolution is a slow stochastic process
that takes place at the population level and determines the basic structures of
an organism. Lifetime learning works by tuning up the structures of an indi-
vidual, by a process of gradual improvement of the individual's adaptation to
its surrounding environment. In terms of a computational procedure, evolution
seems suitable for global search, while learning should be used to perform local
search. New optimization procedures, based on analogies with the evolution
of natural living systems, have been carried out, giving rise to techniques such
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as the Arti�cial Neural Networks (ANNs) and Genetic and Evolutionary Algo-
rithms (GEAs), which have already on their shoulders interesting results on a
broad set of scienti�c and engineering problems.

The Feedforward Neural Network (FNN) is one of the most popular ANN
architectures, where neurons are grouped in layers and only forward connections
exist. This provides a powerful connectionist model that can learn any kind
of continuous nonlinear mapping, with successful applications such as Time
Series Forecasting, Medical Diagnostics or Handwritten Recognition, just to
name a few. The interest in supervised learning and FNNs was stimulated by
the advent of Backpropagation algorithm [6]; since then several variants have
been proposed, such as the Quickprop and the RPROP [3]. However, these
may not escape from local minima when the error surface is rugged.

On the other hand, GEAs are suited for combinatorial problems, where the
exhaustion of all possible solutions requires huge computation. GEAs perform
a global multi-point search, being able to escape from undesired local minima.
The use of evolutionary search may overcome gradient-based handicaps, but
convergence is in general much slower, since these are general purpose methods.

Evolution and learning can be combined in two major ways, namely the
Baldwin and Lamarckian Evolution. Both approaches use lifetime learning
to accelerate evolution. The main di�erence is that the latter allows the in-
heritance of the acquired information. The aim is to study the bene�ts of
the combination of evolution and lifetime learning, when applied to Machine
Learning tasks. The Lamarckian point of view will be adopted, since previous
work favored this strategy under static environments [5]. The combination of
GEAs and ANNs will be materialized via the evolution of a population, where
each individual codes for the weights of an FNN. The individuals are allowed
to improve their �tness during lifetime, by a gradient descent process.

2 Learning Models

Four di�erent models will be de�ned to approach each learning task, namely:

Connectionist Model (CM) - The learning is achieved by a single FNN,
with a �xed topology, with one hidden layer, using the logistic activation
function. The initial weights are randomly assigned within the range
[�1; 1]. The training is achieved by the RPROP algorithm, chosen due to
its faster convergence and stability in terms of parameter's adjustment.

Darwinian Model (DM) - The learning process is accomplished by a GEA,
where a population of 20 real-valued chromosomes is evolving, each coding
for the weights of an FNN. In each iteration, 50% of the individuals are
kept from the previous generation, being the remaining bred through
the application of genetic operators. In this work, two operators were
adopted, namely the two point crossover [1] and a gaussian mutation
that adds, to a given gene, a value taken from a gaussian distribution,
with zero mean. The �tness of each chromosome is calculated by an error
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metric, the Root Mean Squared Error (RMSE), that ranges over all the
training patterns.

Lamarckian Model (LM) - it combines both lifetime learning and evolu-
tion, making use of GEAs, as the main engine, and gradient-based FNN
training methods, for local search (in this case, 20 epochs of the RPROP
algorithm). The improved weights are encoded back into the chromosome
(Figure 1).

Population of Connectionist Models (PM) - This model is approach is
added with the purpose of achieving a fair comparison among models, in
particular to measure the weight of the genetic operators. A population
of 20 ANN's is evolved with the application of the RPROP algorithm.
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Figure 1: An illustration of the Lamarckian strategy of inheritance

3 Machine Learning Tasks

In the experiments carried out in this work, two arti�cially created tasks and
two real ones were selected:

N Bit Parity (NBP) - This is a famous benchmark [3], being de�ned by 2N

patterns of N inputs and one output, which is set to the value 1, if the
total number of input bits set to 1 is odd, and 0 otherwise.

Three Color Cube (TCC) - This is a simple arti�cialML task that consists
in learning how to paint a large 3D cube, made up by a 3x3 grid of blocks
(27 smaller cubes) (Figure 2) [5]. Each smaller cube is represented by its
coordinates on the X , Y and Z axis, that can take values from f�1; 0; 1g,
and can be painted with three di�erent colors: black, grey and white. The
corners are black, the cubes in the center are white, being the others grey
(Figure 2). In terms of the ANN training cases, 27 patterns are created,
one for each cube, consisting of 3 inputs and 3 outputs (one for each
color).
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Sonar: Mines vs Rocks (SMR) - The task is to discriminate between sonar
signals bounced o� a metal cylinder and those bounced of a roughly cylin-
drical rock [2]. The data has 104 training cases with 60 real inputs and
one boolean output.

Diabetes in Pima Indians (DPI) - This task consists in diabetes diagnosis
(a boolean output) from seven input real variables (e.g., number of preg-
nancies). The data is de�ned by 200 samples, taken from a population of
women of a Pima Indian heritage [4].

X

-1

0

1

X

Z

-1

0
1

-1-1

1

1

Y

Figure 2: The Color Cube Problem

4 Experiments and Results

All experiments reported in this work were conducted using programming en-
vironments developed in C++, under the Linux operating system. The results
obtained are compared in terms of two orthogonal parameters, the overall learn-
ing's accuracy, measured by the RMSE obtained for the set of patterns, and the
process eÆciency, measured by the time elapsed (in seconds). For all models,
at each time slot, it were considered the average of the results obtained in thirty
independent runs. For the last three learning models, the best individual in
the population was considered. The number of hidden nodes was set to seven
for the DPI task, and six for the other benchmarcks (6BP, TCC and SMR).

The results obtained are shown in Figure 3, where the evolution of the
RMSE is plotted, in terms of CPU time (in seconds). More accurate informa-
tion on the �nal results is presented in Table 1. An analysis of the results shows
that the LM behaves in a better way, although the CM presents a faster con-
vergence in the initial stages, but looks as being trapped in local minima. The
results obtained by the PM show the importance of the genetic recombination.
In fact, it is not enough to introduce diversity to escape from local minima.
The performance of the PM was even worst than that of the CM one due to
the sharing of computational resources between the several ANNs. Therefore,
the combination of lifetime learning and evolution may exceed the sum of its
parts.
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Table 1: Best learning results.
Task CM DM LM PM
6BP 0.236 0.315 0.109 0.247
TCC 0.280 0.339 0.226 0.248
SMR 0.051 0.378 0.014 0.314
DPI 0.171 0.340 0.142 0.192

5 Conclusions and Future Work

Some work in this arena has already been put forward, where similar models
have been compared. However, most of these studies consider only the bene�ts
of lifetime learning, and the tradeo� between bene�ts and costs is rarely con-
sidered. In the present work, the comparisons between the models is made by
considering the CPU time, so that they can be fair.

The results do support the idea that the Lamarckian evolution of learning
entities makes itself has a very interesting method forMachine Learning. In the
future one intends to enlarge the experiments domain, by looking at some real-
world applications, such as those of system's control, time-series forecasting or
production scheduling.
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Figure 3: Results for the 6BP, TCC, SMR and DPI tasks.
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