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Abstract. The evolution strategy with neighborhood attraction (EN)
is a new combination of self-organizing maps (SOM) and evolution strate-
gies (ES). It adapts the neighborhood relationship known from SOM to
ES individuals to concentrate them around the optimum of the problem.
In this paper, detailed investigations on the in
uence of one of the most
important EN-operators { the neighborhood attraction { were performed
on a variety of well-known optimization problems. It could be shown that
the parameter setting for the neighborhood attraction has a very strong
in
uence on the convergence velocity and the robustness of the EN, and
suggestions for applicable parameter settings could be made.

1 Introduction

Evolution strategies with neighborhood attraction (EN) are a combination of
two di�erent kinds of problem solvers: Evolution strategies (ES) and arti�cial
neural networks, especially self-organizing maps (SOM). ES were developed
in the late 1960s by Rechenberg and Schwefel and improved in the following
time (see [6], [7] and [2]). Their main application is the optimization of real-
valued multi-parameter problems. They directly use the information about the
quality of a potential solution of the function to be optimized. They work on
a population P of potential solutions (individuals a) by manipulating these
individuals with genetic operators.

A special class of neural networks - the self-organizing maps (SOM) - were
developed in the 1980s by Kohonen [5]. The neurons of a SOM are organized in
neighborhood relationship, e. g. a two-dimensional grid. The idea behind EN
is to transfer the neighborhood and the learning rule de�ned for SOM neurons
onto the individuals of an ES (see �gure 1) to concentrate the individuals
around the optimum. In previous benchmark tests it could be shown, that
this EN is able to solve diÆcult optimization tasks. It was also shown, that
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Figure 1: EN: Transfer of the SOM
neighborhood onto ES individuals
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Figure 2: Neighborhood attrac-
tion in EN
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Figure 3: Attraction factor Æ

the performance of the EN is equivalent to or even better than comparable
conventional ES on a number of benchmark problems (cf. [4]).

In these former test series it was also found out that the convergence speed
or { in the extreme case { even the success or failure of the EN depends strongly
on the parameter settings for the neighborhood attraction factor Æ.

In this work, this attraction factor Æ is thoroughly investigated, its in
u-
ence on the performance of the EN is shown, and suggestions for applicable
parameter settings are made.

A short description of the EN is given in section 2. The optimization prob-
lems used as a test bed for our investigations are described in section 3. Section
4 shows the test series that were performed, and the results are discussed in
section 5.

2 Basics of the Evolution Strategy with Neigh-

borhood Attraction

The individuals, which are unordered in conventional ES, have neighborhood
relations in the EN. The neighborhood between the � parent individuals is
constituted by arranging them in an orthogonal, elastic grid. As known from
SOM, each individual can be identi�ed by its �xed grid position, and two
individuals are neighbors if they are directly connected on the grid.

As is customary in ES, the EN individuals are evaluated using the �tness
function.

The EN-speci�c genetic operator { the neighborhood attraction { manip-
ulates the EN-individuals according to one learning step in a SOM. Every
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individual aP is attracted to its best neighbor aNb and thus becomes the o�-
spring aO (see �gure 2). The object variables ~xO of the o�spring are calculated
with equation 1, the neighborhood relations are retained unchanged.

~xO = ~xP + Æ � (~xNb � ~xP ) (1)

(~xNb � ~xP ) is the di�erence vector between the object variables vectors ~xP
of the parent and its best neighbor ~xNb. The parameter Æ (see �gure 3) de�nes
the strength of the attraction along the di�erence vector and ~xO denotes the
object variables of the o�spring.

If the parent individual aP is considered better than all its neighbors aNj

(j = 1 : : : g, g is the number of neighbors) a "simple conventional" mutation is
performed. For details, please see [4].

3 Test Functions

The functions below have been used as a test bed to investigate the in
uence of
Æ to the EN. They are numbered according to common test functions used in e.
g. [1] and [3]. All test functions are minimization problems with an optimum
in fi(~x) = 0. This test bed includes uni-modal (f1, f2, f6, f15) and multi-
modal functions (f9, f21) as well as symmetric and non-symmetric functions
(f2). We chose these test functions because they were already used successfully
in previous work to compare the performance of the EN to other ES.
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4 Test Series

For the test series, we varied the value of Æ between 0.00011 and 0.1. The values
of � were set to � = 2, � = 11, and � = 100, which result in a simple connection
of two individuals, a 1D-chain neighborhood and a 2D-grid neighborhood, resp.,
and which scale roughly with factor 10. The number of o�springs was set to the
constant value � = 2. For all test functions the dimension of the problem space
was set to d = 10. All test series were conducted with several di�erent seeds for
each �-Æ-combination and then averaged out. The graphical representations of
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Figure 4: Tests with functions f1 and f6: Number of function evaluations and
result quality (for � = 2) in dependency of Æ

the results of the test series can be seen in �gures 4, 5 and 6. The graphs show
the following: The upper graphs show the correlation between Æ (abscissa) and
the number of function evaluations (ordinate) which were necessary to �nd
the optimum of the test function. For these graphs, only converged runs were
regarded. The lower graphs show for the di�erent values of Æ the average and
the standard deviation of the best function values reached (ordinate). Here,
all test runs were considered. These graphs are indicators of the robustness
in
uenced by Æ. Only the results for � = 2 and � = 100 are shown (�gure 6),
the results for � = 11 lie fairly in the middle of those.

5 Results

The graphical representation of the test series shows the reciprocal relation
between Æ and the number of function evaluations (i. e. the performance of
the strategy).

It can be seen that for uni-modal functions, the strategy might be sped up
without any loss of reliability by tuning Æ to its optimal value of about 0.02 -
0.05 (see functions f1, f6, f15). The value of � has almost no in
uence on the
robustness; therefore only the results for � = 2 are shown here (lower graphs in
�gures 4, 5). But � has a proportional in
uence on the speed of the strategy,
what can be seen in the upper graphs.
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Figure 5: Tests with functions f15 and f2: Number of function evaluations and
result quality (for � = 2) in dependency of Æ

For multi-modal functions it is more diÆcult to choose an optimal Æ. The
convergence velocity increases with Æ like for uni-modal functions (upper graphs
in �gure 6), but the robustness decreases (lower graphs in �gure 6). Thus, the
choice of a smaller Æ is the slower but safer way to optimize a multi-modal
function. Another way to increase the robustness is to increase �, which can
be seen for the functions f9 and f21 in �gure 6. The two lower graphs show
that for � = 100 the optimum is more reliably found than for � = 2. This
holds also for function f2, which is uni-modal but very diÆcult to solve.

Recapitulating, it can be stated that EN is equivalent or even better than
comparable other ES in solving diÆcult optimization tasks, and the neighbor-
hood attraction parameter Æ can be used to tune the convergence velocity and
the reliability of the EN.
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