
Designing Nearest Neighbour Classi�ers by the

Evolution of a Population of Prototypes

Fernando Fern�andez and Pedro Isasi

Universidad Carlos III de Madrid.
Avda de la Universidad 30. 28911, Legan�es. Madrid (Spain)

�ernand@scalab.uc3m.es isasi@ia.uc3m.es

Abstract. A new evolutionary algorithm to design nearest neightbour

classi�ers is presented in this paper. Main design topics of this sort of

classi�ers are the number of prototypes used and their position. This

algorithm is based on the evolution of a population of prototypes that

try to achieve an equilibrium by �nding the right size of the population

and the position of each prototype in the environment, solving at the

same time both design topics above. A biological point of view is given

to explain most of the concepts introduced, as well as the operators used

in evolution.

Keywords: Classi�er design, nearest neighbour classi�ers, evolutionary
learning.

1 Introduction

Nearest Neighbour Classi�ers are de�ned as the sort of classi�ers that assign
to each new unlabeled example, v, the label of the nearest prototype ri from
a set of N di�erent prototypes previously classi�ed [11]. The design of this
classi�ers is diÆcult, and rely in the way of de�ning the number of prototypes
needed to achieve a good accuracy, as well as the initial set of prototypes used.

Many discussions about what is the right technique to use can be found
in the literature [6]. Some clustering approaches [13, 12, 1] are based in two
main steps. The �rst one is to cluster a set of unlabeled input data to obtain a
reduced set of prototypes. The second step is to label these prototypes basing
on labeled examples and the nearest neighbour rule.

Neural networks approaches are also very common in the literature, like the
LVQ algorithm [5] and the works of other authors with radial basis functions [4].
To �nd the right number of neurons of the net, two basis approaches can be
found. On one hand, some techniques try to introduce or eliminate prototypes
(or neurons) while designing the classi�er following di�erent heuristics, as the
average quantization distortion [13] or the accuracy in the classi�cation [10].

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

On the other hand, typical approaches try to de�ne �rst the optimal size of the
classi�er and after to learn it using this value. Genetic algorithms approaches
are typically used to �nd an initial set of prototypes, as well as its right size, in
addition to another technique to achieve local optimization [9]. In [6], genetic
algorithms are used, as well as random search to de�nitively �nd the right set of
prototypes. In [14], an evolutionary approach is presented based in the R4 rule
(recognition, remembrance, reduction and review) to evolve nearest neighbour
multilayer perceptrons.

In this work, an evolutionary algorithm is introduced to dinamically de�ne
the number of prototypes of the classi�er as well as the location of these pro-
totypes basing in a biological description of the problem. Thus, the classi�er is
de�ned as a population of animals (prototypes) that must �ght to eat vegeta-
bles (training examples) that allows them to survive and to �nd an equilibrium
in the environment (optimum number of prototypes). So, the evolution will
allow the individuals to locate themselves in the right position, and to be la-
beled in the right way, achieving the equilibrium only when the right number
of prototypes is achieved.

In the next section, the algorithm is explained, as well as the main concepts
that are used. Section 3 shows principal experiments performed and a com-
parision with previous works, while section 4 shows main conclusions achieved
and further research.

2 Evolutionary Design of Nearest Neighbour Clas-
si�ers (ENNC)

The ENNC algorithm o�ers an evolutionary point of view to the design of
nearest neighbour classi�ers. The main advantages of this method is that
neither the number of prototypes used, nor an initial set of prototypes are
required. The �rst di�erence among this algorithm and previous evolutionary
approaches is the way of representing the population: in this case, and following
the Mitchigan approach, each chromosom represents only one prototype, and
not a whole classi�er, so the classi�er is represented by the whole population.
The main concepts can be de�ned as follow:

Classi�er/Population, C. A set of N prototypes C = fr1; : : : ; rNg.

Prototype/Animal, ri Each prototype is composed by the localization of
the prototype in the environment and the class (label) of the prototype.

Region, ri. The environment is divided in a set of N regions. Each animal
only eats vegetables in each own region. The region of each animal is
de�ned by the position of the animal and the nearest neighbour rule.

Class/Specie, sj. Both animals and vegetables belogns to a class or specie
from the set S = fs1; : : : ; sLg. The goal of an animal ri of specie sj is to

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

eat as vegetables of class sj as possible and not to eat vegetables of other
classes sk 6= sj .

Pattern/Vegetable, vr Is each one of the patterns or examples that will be
used for training or testing the system. They are considered as vegetables
of the biological system.

Quality/Health of a prototype/animal Is a weighted relationship among
the local performance of the prototype and the performance of the other
prototypes.

Second main di�erence of this algorithm with previous evolutionary ap-
proaches comes from the operators that are used to evolve. In this case, most
of the operators are based on heuristics of previous works, and new ones have
been incorporated. So the learning phase is an iterative process that execute
several operators over each individual. Each of this iteration is called a year
in the animals life, and the year is divided in four seasons: spring, summer,
fall and winter. In each season, di�erents operators are executed, and are
summarized in table 1.

Season Operators Description
Spring Mutation Each animal change its own specie to the ma-

joritary specie of vegetables in its region
Summer Reproduction The animals reproduce to create animals that

eat what they do not want to eat
Fall Fight and Move The animals �ght against other animals and

move to a di�erent position to get more food
Winter Die Weak animals die

Table 1: Phases of the algorithm and operators used in each phase

Another important issue is that this division in di�erent iterations allows
to use di�erent trainning patterns in each iteration, as well as di�erent test
patterns. In this sense, the quantity of patterns used for trainning and for test
is de�ned by the user. The inizialization of the algorithm and the di�erent
seasons and operators are explained in the following.

Initializing. To de�ne the initial population, two possibilities have been
taken into account. The �rst one is to start with only one animal, which is the
�rst individual of the population. The second one is to start with one animal
for each input pattern. In this sense, the problem of the initial set of prototypes
is solved, and both initialization ways will be discussed in the experiments.

Spring. The spring season is the time when the vegetables born. All the
animals are placed in its own region, and will recollect all the vegetables in its
region. The way to de�ne if a vegetable belongs to an animal or other is based
on the nearest neighbour rule.

At the end of spring, each animal knows the quantity of vegetables of each
specie that it can eat, so it will become to the specie of the most abundant

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

specie of vegetables. This operator correspond with the labeling phase of the
unsupervised learning approaches[1, 12], but in this case, the supervision is
included in each iteration and not only in a posterior phase. This operator is
called mutation operator.

Summer. Summer is the season where animals reproduce (second opera-
tor). In this case the reproduction is asexual, and an animal only reproduce if
it needs another animal that eats what it does not want to eat, so it has a self-
ish motivation. In a neural network domain, reproduction is equivalent to the
insertion of new neurons in the net based on the accuracy of the classi�er [4].

So an animal only reproduce if into its region, vegetables of di�erent classes
are found. The probability of reproduction is proportional to the di�erence
among the number of vegetables of each class in its region. Newborn animal is
located in order to increase the ancestor performance.

Fall. Fall is the time where food starts to scarce, and the animals decide to
look for more food. In this sense, fall have two phases. In the �rst one, animals
can �ght among them, in order to steal territory to other animals and to get
more food (third operator). In the second phase, animals locate themself in an
optimum place to spend the winter and to wait the next spring (�fth operator).

1. Fights: An animal can decide to �ght with other animals in order to
get more food. Fight operator is executed for each animal, and have the
following phases:

(a) To choose a rival by assigning probalities proportionals to the dis-
tance to the rest of animals and using a roulette as a selection
method.

(b) Once the rival is selected, the animal have to decide whether to �ght
or not. The probability of �ghting is proportional to the di�erence
in health of both rivals.

(c) Once the rival has been selected and the animal decides to �ght,
there are 2 possibilities:

i. The animals does not belongs to the same specie. In this case,
it have not sense to �ght, and both animals sign an agreement,
in the way that the second one gives the vegetables required to
the �rst one.

ii. Both animals belongs to the same specie. Animals �ght, with a
probability of victory proportional to the animals health. The
winner steals food to the looser, and if it is allowed to steal all
the food to the looser, the looser die.

2. Move: The move operator implies to relocate each animal in the best
expected place for spend the winter and wait for the following spring.
So each animal decides to move to the centroid of the vegetables of its
same class. This operator is based on the Lloyd iteration of the GLA
algorithm [7].

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

Winter. In winter, weak animals die. Probability to die is 1 minus the
double of the health. Then, healthfull animals will survive with probability of
1, while weak animals with health of less than 0.5 might die. In the neural
network bibliography, an extense documentation about which neurons to select
in order to simplify the network structure can be found [4, 13]. At the end of
this season, all vegetable disappear.

3 Experiments and Results

3.1 Simple Gaussian Distributed Data

In this experiment, two di�erent classes are de�ned following the distributions
shown in �gure 1(a). We have applied the ENNC learning algorith in its two
versions. First, starting with only 1 centroid (population of size 1), and second
using as centroids as the number of input patterns. In both cases, the 30% of
the data is used for testing following a cross validation scheme. The results of
both approaches are shown in �gure 1(b).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-0.5 0 0.5 1 1.5 2 2.5

class 1
class 2

centroids

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30S
uc

ce
ss

 R
at

e
an

d
N

um
be

r
of

 C
en

tr
oi

ds
 U

se
d

Iterations

Success V1
Centroids V1

Success V2
Centroids V2

(a) Data and Classi�er (b) Results

Figure 1: (a) Data with Simple Gaussian Distributions and the Centroids of a
classi�er obtained (b)Success obtained and prototypes used for each Iteration.

We can see how in the �rst case, the number of centroids is increased to
�ve. In the second case, the number of centroids is also reduced to �ve, so both
versions achieve the same number of centroids. Furthermore, a 100% of succes
is obtained in both cases. Note, that the �rst vesion achieves the objective
faster than the second, and only needs 8 iterations to get better results. For
the second version, 25 iterations are need. This delay respect the �rst version is
due to the high number of centroids to eliminate. An example of the classi�er
found is given in �gure1(a), showing the centroids located in the mean of the
distributions.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

3.2 Iris Data Set

Iris Data Set from UCI Machine Learning Repository 1 [3] is used in the second
experiment. This dataset consits of 150 samples of three classes, where each
class has 50 examples. The dimension of the feature space is 4. In this case,
and for comparision reasons, the whole data set was used for training and for
testing.

The results of aplying both versions of the ENNC algorithm are shown
in �gure 2(a), where the number of prototypes and the success achieved are
shown. Two experiments have been perfored, one initializing the population
with only one prototype (version 1) and another initializing the population with
as prototypes as number of input examples (version 2). Both versions converges
to classi�ers of 3 or 5 centroids, osciling among them without to decide which
one is better. 5 centroid classi�er achieves the best results, 98% of success,
while 3 centroids classi�er achieve a 91% of success. As in previous experiment,
convergence of the ENNC algorithm is faster when an initial classi�er of only
one centroid is used instead to use as initial classi�er the whole data set, and in
both cases, less than 150 iterations were needed to �nd the better results. The
decission about what classi�er is better, the one of 3 prototypes and 91% of
accuracy, or the one of 5 prototypes and a 98% of accuracy, is a user decision.

These results are compared with the ones presented in [2, 6, 8], and are
summarized in table 2(b), where the number of prototypes and the misclassi-
�cations are shown. For the ENNC algorithm, di�erent results are extracted
from di�erent moments of the population evolution for both inizializing ways.
We can see how ENNC algorithm improves the results of MFCM-3, LVQ and
GLVQ-F, but can not achieve the results of the improved PNN, that has one
misclassi�cation with only 3 prototypes.

4 Conclusions and Further Research

The ENNC algorithm for the design of nearest neighbour classi�ers has been
exposed in this work, and some experimental results in well-known domains,
as well as their comparisions with di�erent works from the literature have
been shown. In this sense, good results have been achieved, improving the
results of most of the algorithms in most of the domains. Anyway, the real
improvement of ENNC is not only the capability to achieve good results, but
the facility these results are achieved. Most of the algorithms need a prede�ned
number of prototypes to use, and the initial location of these prototypes. In this
algorithm, no initial conditions must be introduced, given that both version
of the algorithm converges to the same solutions. Furthermore, most of the
methods found in the literature to solve this problem are based in how to
generate these initial parameters in order to locally optimize with another
technique, i.e. they use a known technique and try to improve it. In our

1http://www.ics.uci.edu/�mlearn/MLRepository.html

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200S
uc

ce
ss

 R
at

e
an

d
N

um
be

r
of

 C
en

tr
oi

ds
 U

se
d

Iterations

Success V1
Centroids V1

Success V2
Centroids V2

Algorithm Prot. Mis.
MFCM-3 7 8
LVQ 7 3
LVQ 3 17
GLVQ-F 8 3
DR 5 3
DR 3 10
Improved PNN 3 1
ENNC (version 1) 5 3
ENNC (version 1) 4 9
ENNC (version 1) 3 11
ENNC (version 2) 82 0
ENNC (version 2) 5 3
ENNC (version 2) 3 11

(a) Evolution of the populations (b) Comparisions

Figure 2: (a)Success obtained and prototypes used for each Iteration.
(b)Comparisions with previous works

case, all the goals are solved and integrated in the algorithm itself, and no
additional technique is needed to solve any other problem.

However, there are di�erent aspects that have not been handle yet. The
main one is about convergence. We have shown how the algorithm does not
converge totaly in complex domains, neither to a de�ned number of centroids,
nor to a de�ned success. This is due to the ability of the algorithm to escape
from a local minimum. For instance, the algorithm is able to escape from a
situation of a 100% of success in order to �nd less size classi�ers, and vice
versa, it is able to escape from a small size classi�er introducing new centroids
in order to improve the accuracy. There are several mechanisms that could be
used to decide when to stop learning. The single one is to let the algorithm run
a long number of iterations, and after, review the results. The problem of this
approach is that, at �rst, the user does not know the number of iterations that
the algorithm will need to achieve good results. Another way is to de�ne several
user goals, so the algorithm works until it achieves these goals. The problem of
this approach is that maybe the algorithm might �nd better solutions in a low
time. Thus, an extensive work about when to stop the algorithm is required.

Acknoledgments

The author would like to thank In�es Galv�an and Ana Ma Iglesias for their main
contributions on this work. This research has been partially supported by a
grant of the Ministry of Education, Culture and Sport of Spain.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

References

[1] Sergio Bermejo and Joan Cabestany. A batch learning algorithm vector
quantization algorithm for nearest neighbour classi�cation. Neural Pro-

cessing Letters, 11:173{184, 2000.

[2] James C. Bezdek, Thomas R. Rechherzer, Gek Sok Lim, and Yianni At-
tikiouzel. Multiple-prototype classi�er design. IEEE Transactions on Sys-

tems, Man and Cybernetics, 28(1):67{79, February 1998.

[3] C. L. Blake and C. J. Merz. UCI repository of machine learning databases,
1998.

[4] Bernd Fritzke. Growing cell structures -a self-organizing network for unsu-
pervised and supervised learning. Neural Networks, 7(9):1441{1460, 1994.

[5] Teuvo Kohonen. Self-Organization and Associative Memory. Springer,
Berlin, Heidelberg, 1984. 3rd ed. 1989.

[6] Ludmila I. Kuncheva and James C. Bezdek. Nearest prototype classi�ca-
tion: Clustering, genetic algorithms, or random search? IEEE Transac-

tions on Systems, Man and Cybernetics, 28(1):160{164, February 1998.

[7] S. P. Lloyd. Least squares quantization in pcm. In IEEE Transactions on

Information Theory, number 28 in IT, pages 127{135, March 1982.

[8] K. Z. Mao, K.-C. Tan, and W. Ser. Probabilistic neural-network structure
determination for pattern classi�cation. IEEE Transactions on Neural

Networks, 11(4):1009{1016, July 2000.

[9] J. J. Merelo, A. Prieto, and F. Mor�an. Optimization of classi�ers using
genetic algorithms. In Patel Honavar, editor, Advances in Evolutionary

Synthesis of Neural Systems. MIT press, 1998.

[10] J. C. P�erez and Enrique Vidal. Constructive design of LVQ and DSM
classi�ers. In J. Mira, J. Cabestany, and A. Prieto, editors, New Trends in

Neural Computation, volume 686 of Lecture Notes in Computer Science.
Springer Verlag, 1993.

[11] Peter E. Hart Richard O. Duda. Pattern Classi�cation and Scene Analysis.
John Wiley And Sons, 1973.

[12] Nikhil R.Pal, James C. Bezdek, and Eric C.-K. Tsao. Generalized clus-
tering networks and kohonen's self-organizing scheme. IEEE Transactions

on Neural Networks, 4(4):1993, July 1993.

[13] M. Russo and G. Patan�e. ELBG implementation. International Journal of
Knowledge based Intelligent Engineering Systems, 2(4):94{109, April 2000.

[14] Q. Zhao and T. Higuchi. Evolutionary learning of nearest neighbour MLP.
IEEE Transactions on Neural Networks, 7(3):762{767, 1996.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 171-178

