
Multiple Layer Perceptron Training 
Using Genetic Algorithms

Udo Seiffert

University of South Australia, Adelaide
Knowledge-Based Intelligent Engineering Systems Centre (KES)

Mawson Lakes, 5095, Adelaide, Australia
udo.seiffert@unisa.edu.au

Multiple Layer Perceptron networks trained with backpropagation algorithm are
very frequently used to solve a wide variety of real-world problems. Usually a
gradient descent algorithm is used to adapt the weights based on a comparison be-
tween the desired and actual network response to a given input stimulus. All train-
ing pairs, each consisting of input vector and desired output vector, are forming
a more or less complex multi-dimensional error surface during the training proc-
ess. Numerous suggestions have been made to prevent the gradient descent algo-
rithm from becoming captured in any local minimum when moving across a
rugged error surface. This paper describes an approach to substitute it completely
by a genetic algorithm. By means of some benchmark applications characteristic
properties of both the genetic algorithm and the neural network are explained.

1 Introduction

Multiple layer perceptrons (MLP) [1] commonly trained with backpropagation (BP) [2], [3] are
very frequently used to solve a great variety of real-world problems. Among the group of super-
vised trained networks this paradigm can be considered meanwhile as the standard architecture.
That’s why numerous extensions and modifications have been suggested to improve the results
or to achieve some required properties of trained nets. This focuses mainly on 

the acceleration of the convergence speed (i.e. fast-backpropagation), 
special learning rules and data representation schemes (i.e. cumulative delta-rule, cascade
and batch learning), 
different error functions (i.e. cubic instead of standard RMS error), 
alternative transfer (activation) functions of the neurons, 
weight distribution (i.e. weight pruning) 

and some more. One key element, backpropagation is based on - the gradient descent algorithm
to minimize the network error - has been changed scarcely. 
Usually a gradient descent algorithm is used to adapt the weights based on a comparison between
the desired and actual network response to a given input stimulus. All training pairs, each consist-
ing of input vector and desired output vector, are forming a more or less complex multi-dimen-
sional error surface. Some suggestions have been made to prevent the gradient descent algorithm
from getting stuck in local minima when moving across a rugged error surface. This paper de-
scribes an approach to substitute it completely by a genetic algorithm. 
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2 Motivation 

Despite its popularity as an optimization tool, not only for neural network training, the gradient
descent has several drawbacks. It is dependent on the shape of the error surface, the starting point
(values of the usually randomly initialised weights) and some further parameters. A common er-
ror surface has many local minima usually not meeting the desired convergence criterion.
Of course there are some approaches to prevent the gradient descent algorithm from becoming
stuck in any local minimum when moving across the error surface. Some of them, being frequent-
ly used, are the introduction of a momentum term (useful for points of high curvature) and the uti-
lization of a synchronized decreasing learning rate. Once the system is stuck in any local
minimum, the weights can be jogged; a small random offset is added before the next iteration
continues. However, all this is not able to really overcome the many existing problems. 
Recently some investigations into neural network training using GAs have been published. Often
only selective problems with their particular solution are in the focus of attention. This paper
demonstrates a more general way. 
Genetic algorithms (GA) [4] offer an efficient search method for a complex problem space and
can be used as powerful optimization tools. Potential solutions (single individuals resp. chromo-
somes in terms of genetic algorithms) to a problem compete with each other in order to achieve
increasingly better results. With regard to the above mentioned problems of the gradient descent
a complete substitution of it by a GA might be advantageous [5]. Besides the neural network de-
sign optimization using genetic algorithms [6], [7], [8] this is another very interesting and biolog-
ically motivated symbiosis of artificial neural networks and evolutionary computation. 

3 Implementation

It would go beyond the scope of this paper to explain the basic terminology, implementation and
features of genetic algorithms. Therefore a basic knowledge is assumed and only those aspects
concerning the neural network training are mentioned. 
In order to get an appropriate chromosomal representation of the network’s weights [9], these
have to be randomly initialised multiple times and accordingly coded into a linear structure. Each
chromosome (individual) represents one neural weight set (see Figure 1). Since the architecture
of the neural network is predefined and remains fixed after the initialisation, the chromosome
solely consists of the weight values and does not contain any topological or structural informa-
tion. All these individuals represent the initial population.
Now the fitness function of every member of the current population is computed by performing
a recall of the network for each weight set. In order to match the network’s topology, all chromo-
somes have to be decoded again. If there is a recall result satisfying the required quality criterion,
defined by the overall network error, the process stops. Otherwise, genetic operations using the
reproduction and / or selection operator are executed to form an intermediate population. Finally
a new population is generated by applying crossover and maybe mutation to this intermediate
population. A new iteration cycle starts again with the computation of the fitness functions. 
By selecting suitable parameters to control the GA, high efficiency and good performance can be
achieved. The neural network is run only in recall mode which can be easily implemented and
guarantees a rather simple adaptation to any demands on its behaviour made by the task to be
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solved. In the long run at least one individual should meet the stopping (convergence) criterion.
It represents the weight set of the best trained network. This can be applied to the actual problem
just as it had been trained by backpropagation or any other learning sequence. From now on it
does not matter how the network was actually trained. 

4 Results 

4.1 A simple XOR

In order to have the results
comparable to other studies,
particularly to conventionally
(with BP) trained MLPs, at
first some frequently referred
benchmark problems have
been applied to evaluate per-
formance and properties of
the evolutionary trained net.
For illustration purposes the
well-known exclusive-or
(xor) problem has been select-
ed. Based on a multitude of experiments evaluating different parameters to control the genetic al-
gorithm, a standard set has been defined (see Table 1). In order to be able to solve the two-bit xor,
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Figure 1: Mapping the weights of the neural network from problem space (left hand side) into a chromo-
some (representation space) and v.v. by means of a network with two inputs, two hidden layers with two
neurons (nodes) each and an one neuron output layer. Including the bias, a total amount of 15 weights is
coded into the linear chromosome. The order of weights within the chromosome is chosen arbitrarily, but
must be left unchanged while the network is trained. 

Figure 2: Training progress by means of normalised average network
error (upper line) and network error of the fittest individual (lower line).
The desired network error to stop training is marked with a dotted line.
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the network size has been set to 2 inputs, 2 neurons in the hidden and 1 in the output layer with a
sigmoid transfer function. Initially 50 weight sets have been created and coded into corresponding
chromosomes. The stopping criterion is an or-combination of the network error during recall and
a maximum number of generations. The normalised average network recall error (mean value
of the average recall errors using the complete training data set (4 examples) from all 50 chromo-
somes) of the initial population is about 0.5. The fittest individual of the initial population has an
error of about 0.4. After 42 generations the error falls below the desired threshold and the training
is stopped at an error of 0.0061.
Figure 2 shows the training progress of
this selected characteristic example.
This result has to be compared with a
conventionally trained network of the
same size and under comparable cir-
cumstances (computation speed, im-
plementation details). Of course,
numerous networks with varying pa-
rameter combinations as well as with
identical parameters and only different
weight initialisation to reduce the role
of chance have been run. The applied
save best strategy sets fair conditions
for the backpropagation and can be
compared with the elitism scheme in
genetic algorithms. Doing this leads to
the following basic statements. 

Neither backpropagation (after a
few restarts) nor the genetic algo-
rithm experienced problems solv-
ing this particular test problem. 
The backpropagation net needs
significantly more iteration cycles
(ratio approx. 50:1 ... 100:1,
depending on initialised weights).
Each single iteration runs consid-
erably faster than one generation
of the evolutionary algorithm (ratio approx. 1:20 ... 1:50). 
It follows that the GA finally has a speed lead of max. 5:1 over the backpropagation. There
are also cases yet, where backpropagation outperforms the genetic algorithm by 2:1 ... 4:1. 

The great range of these numbers indicates that all given values are strongly dependent on some
initially set values and the actually used implementation, i.e. influence of numerical details,
source code, compiler. This must not be undervalued while reading and comparing the numbers.

4.2 Larger networks

This simple xor example demonstrates basic properties and handling of the evolutionary MLP. It
could be expected yet, that advantages become even more evident when dealing with larger net-

Table 1: Standard parameter set used for reference training. 

Parameter Value
transfer function of the 
neurons

tanh

population size pop_size = 50
weight initialisation 
routine

Gaussian; 
mean = 0.0; 
std = 5.0

stopping criterion network_error = 0.01;
max_iter = 500; 
conv = 20; 
eps = 10-4

fitness normalization norm; 
rank

selection operator roulette
elitism elit = 1
crossover pc = 0.8; 

two-point; 
uniform; 

mutation pm = 0.1; 
Gaussian; 
mean = 0.0; 
std = 1.0
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works and more complex problems. The more weights to optimize during the network training,
the higher is the dimension of the corresponding error surface. Along with then often more rugged
error surfaces the risk to become stuck within a local minimum increases. Since a genetic algo-
rithm does not suffer from this, it should still reasonably perform with larger nets. 
In order to test this, several more complex benchmark problems have been used. Among them
are for instance continuous xor, the extension of the binary xor to continuous values and the Iris
flower classification based on [10] with 4 inputs, 3 outputs and 75 training examples. 
For the first two tests, the results are similar to the previous ones. Actually there was no problem
to find an appropriate solution, neither for the MLP nor for the GA. Since the trained nets are larg-
er, the computation time has increased for both methods proportionally. In other words, these
problems are not large enough to challenge the tested algorithms. 
In order to really challenge the evolutionary MLP algorithm, several data sets have been built by
extracting features and statistical parameters from a three-dimensional image data set of a confo-
cal microscope [11]. The length of input vectors varies within a range from 5 to 13, with several
hundred training examples each. Backpropagation (trained in standard configuration with mo-
mentum term) encountered some serious problems and was in most cases not able to meet the de-
sired error criterion. There was no further error decrease, even if the networks were allowed to
run for much more iterations. Obviously the networks were stuck in local minima. The analysis
of the weights, achieved from several runs with the same parameters except for different initial-
ised weights, reported different values for each trial, what supports this theory too. 
In contrast to BP, the GA based nets have been able to solve these tasks successfully and reached
the required error. The genetic algorithms continue to decrease the recall error if run for more gen-
erations. This supports the assumption that GAs do not suffer from becoming stuck in local mini-
ma of the error surface. However, the consumed resources, particularly computation time,
increase exponentially, because longer chromosomes require additionally larger populations. 
On the other hand, BP always required various (5...10) starts with different weight initialisation
to find a path from its given starting point, defined by the randomly initialised weights, to a de-
sired minimum. The higher the demands on the error threshold to be reached, the more problems
have been faced. Keeping this in mind, the lead on the genetic algorithm caused by faster execu-
tion of each BP iteration is destroyed. Thus the utilisation of a GA based network seems to be the
easier and more promising approach, when dealing with large and rather complex problems. 

5 Conclusions

The symbiosis of artificial neural networks and genetic algorithms is not really a new idea. Nev-
ertheless, using genetic algorithms in neural network training is still worth being investigated,
particularly if some drawbacks of neural network training can be avoided. Actually the backpro-
pagation algorithm for training multiple layer perceptrons sometimes encounters some serious
problems and its complete substitution by a genetic algorithm may be a very promising solution.
The main questions this paper was focusing on is under which circumstances might this be useful
and how can a suitable implementation be achieved and handled. 
Assuming both backpropagation and genetic algorithms are run with nearly optimal parameters
under comparable conditions, backpropagation outperforms genetic algorithms in case of simple
standard applications. Considering all aspects, including simulation time, finding and handling
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parameters, necessary previous knowledge and software availability, there is no need to substitute
the well-tried and reliable backpropagation training algorithm. 
But as soon as problems to be solved are getting more complex, backpropagation more and more
fails due to its inherent gradient descent. Backpropagation needs in these cases several starts with
varying initial weights to meet the desired error or is not able to solve the required task at all, while
genetic algorithms are still performing very well. 
On the field of genetic algorithms the results given in this paper show the important dualism be-
tween the length of the chromosome, depending on the number of weights to be coded, and the
average number of necessary generations. The longer the chromosomes the more generations are
required. In general, genetic algorithms are inherently slower than backpropagation. This could
be expected due to their global search technique compared to the highly directed gradient descent
learning of backpropagation. But even this makes it valuable and helpful in those cases BP fails. 
Besides this, the chance to use any transfer function for the neurons, without being bound to the
demand for a differentiable function, it might also be advantageous to consider the substitution of
backpropagation by a genetic algorithm. 
The numbers given in this paper are strongly dependent on many simulation conditions. Other
problems under different circumstances may lead to slightly different results. The basic effects
should be always the same. Comparing this work with related work supports this conclusion. 
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