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Abstract. Recently a variation of learning vector quantization has been
proposed in [1], which allows an automatic determination of relevance
factors for the input dimensions: relevance learning vector quantization
(RLVQ). RLVQ is heuristically motivated and may show instabilities for
inappropriate data since it does not obey a gradient dynamics. Here we
propose an energy function which describes the dynamics of RLVQ in
the stable phase. It can be used to substitute the original dynamics for
instable situations. Moreover, it yields to a batch version of RLVQ where
hard competition can be substituted by soft clustering. Hence annealing
schemes can be applied naturally in order to avoid local minima.

1. Introduction

Kohonen’s learning vector quantization (LVQ) provides a prototype based su-
pervised clustering algorithm which has been successfully applied in various
different areas such as image classification, control, robotics, or data analysis
[11]. There exist modifications which allow an adaptive number of prototypes,
an optimized learning rate, or optimized decision borders, to name just a few
[11]. The original LVQ algorithm is a very intuitive algorithm based on the
metrical structure of the input space; commonly the standard Euclidian met-
ric is used. Hence this metric should represent the internal structure of the
data appropriately. In particular, the single data dimensions have to be of
approximately the same importance for the clustering and they have to be
scaled accordingly. Naturally, several approaches try to overcome this draw-
back by introducing an adaptive metric. They include methods which learn
an appropriate scaling of the input dimensions like DSLVQ [13], RLVQ [1], or
GRLVQ [7]; some methods allow a more complex metrical structure like the
fuzzy clustering algorithms [4, 6], others allow an adaptive metric with respect
to additional information like the unsupervised algorithms in [10, 16].

We will focus on the algorithm RLVQ because it is a very fast algorithm
with an intuitive update which has been successfully tested [1]. The algorithm
has been modified in [7] to generalized RLVQ (GRLVQ) due to the following
reasons: RLVQ is only heuristically motivated and does not obey a gradient
dynamics; for some data, it shows instabilities. These drawbacks are over-
come by GRLVQ which minimizes a clear objective, however, GRLVQ involves
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factors which are no longer intuitive. Hence an objective which characterizes
important cases of RLVQ and which might indicate in which cases RLVQ will
show instabilities would be interesting. We will introduce an energy function
which describes the behaviour of RLVQ in stable situations and which is sim-
ilar to common energy functions for clustering [2]. This energy function can
alternatively be solved in a batch mode. The corresponding update can be
modified such that it yields soft clusterings instead of crisp decisions. Hence
standard annealing schemes as proposed in [5, 14] can be applied to this batch
version of RLVQ such that local minima due to a wrong initialization of the
codebooks can be avoided. The more complex factors in GRLVQ prohibit the
analogous application of the ideas to the energy function of GRLVQ.

2. RLVQ

Assume data (7,y') € R* x {1,...,C},i=1,...,p, are given and we would
like to learn the clustering induced by these training points. In LVQ, the
clustering is provided by prototypes ' € R", i = 1,...,c, which are masked
with labels y(u?) € {1,...,C}. A point & € R is mapped to y(#’) where the
distance |# — | is minimal. Learning algorithms try to find prototypes such
that (almost) all training points are mapped to their respective label. LVQ
initializes the prototypes with random vectors and iteratively adapts as follows

repeat:  choose (fi,.yi) ' '
compute W’ such that |Z* — 7| is minimal
e | W@ =) ifyt=y(a)
W —e(F —u’) otherwise

where € € (0,1) is the so-called learning rate. RLVQ substitutes the standard
Euclidian metric |#* — @”| in the above algorithm by the weighted metric

1/2
7 ] = (z N wz‘>2>
k

where A, > 0 constitute weighting factors with >~ Ay = 1. They are adapted
by Hebbian learning, i.e. the iterative update is accompanied by:

A — ag(af —wp)? if yt = y(a)
Wk: M\ = k k
for a F { Ao + o (2}, —wy)?  otherwise
normalize X

where a > 0 is the learning rate for the weighting factors. This corresponds
to Hebbian learning because precisely those values Ay are increased which con-
tribute to a correct classification if the normalization is taken into account [1].
In [1] the above update is related to simple Perceptron learning and its diffi-
culties if provided with non separable data [9]. Indeed, RLVQ shows similar
critical behaviour if trained for overlapping classes. For this reason a modifi-
cation of RLVQ has been proposed in [7], GRLVQ, which obeys a stochastic
gradient descent on the energy function

Fg =Y sad ((DX@) - DL) / (DX + DL)))
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where D§ (%) is the squared weighted Euclidian distance to the closest correct

prototype and D () is the squared weighted Euclidian distance to the clos-
est wrong prototype. This method constitutes a very efficient generalization
of GLVQ [15] for an adaptive metric. Unfortunately, the resulting formulas
involve terms which are more complex than RLVQ and hence less intuitive.
Can (approximate) energy functions be established for RLVQ, too?

3. Batch-RLVQ

An energy function for RLVQ would consist up to constant factors of two terms
Ep = EE + E5 where

EE=Y Y xi)F -, Ep=-Y Y x(G)E - )

T yi=y () & @l yiy (@)

and ;(j) € {0,1} yields 1 iff # is closest to @/ with respect to the weighted
Euclidian distance. This energy function is highly discontinuous. Moreover,
the minima of Ep lie at the borders, hence instabilities occur if the part Ej
dominates the dynamics. Assumed we train nearly separable data, the part
Ej%' will determine the behaviour in the limit and the result will be stable.
Hence we will consider only the part EE as an approximate energy function for
RLVQ. Le. we assume that the closest correct prototype is updated for each
data point. The dynamics resulting from minimizing EE will be different from
RLVQ iff data are inseparable and RLVQ would yield instable behaviour.
Commonly, the function EE has local optima and the result of a stochastic
gradient descent critically depends on the initial condition. One can avoid local
minima if E7, is minimized via a cooling schedule starting from simple energy
landscapes. We substitute E}’ by a version including soft competition of the
prototypes where the degree of fuzziness is determined by the temperature T":

BLST) =3 | X mG)E — a} + TEni(E) +52(*i—%>'

T\ yi=y(d7)

Here p;(j) € [0,1] are new assignment parameters which are optimized under
the condition Z@D’f7y(1ﬁj):yi pi(j‘) =1. T"hey come from a soft competition of
the prototypes masked with y'. Ent(Z') = 345 (ws)=y: Pi(J) Inpi(j) is the
entropy. The parameters A fulfill )~ Ay = 1. The last summand determines
the influence of these parameters in comparison to standard vector quantiza-
tion. The magnitude of S regulates to which extend the weighting terms can
deviate from the Euclidian setting which is reached for S — oco. The latter
summands in E} (S, T) are minimal if p;(j) is equal for all j or ); is equal for
all 4, respectively. Hence Er(S,T) has a unique minimum for ' — oo where
pi(4) = 1/|{w* | y(@*) = y(@?)}| for y(') = y*. For T, S — 0, we obtain the
original energy. The above equation can be minimized by an EM approach,
iteratively minimizing with respect to p;(j) or with respect to @/ and Ag. It
follows like in [8, 12] that this procedure converges. The minima of E%(S,T)



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 295-300

for fixed p;(j) or fixed w; and A, respectively, can be explicitely computed
using Lagrange multipliers. We obtain for y(u?) = y*

exp (—|ai°’Z - u'ij|2X/T)

St )=yt X0 (—1 = *2/T)

pi(j) =

In addition, we define p;(5) := 0 for y¢ # y(2#). The minimum with respect to

W yields '
u_}.j Z zi Pi (] ) T

- Zj‘i pz(])

Minimizing E7; (S, T) with respect to Ax under the constraint Y, A, = 1 yields

o gy 1
A (Z S+ g0 Pi() (), — wi)2>
k= VT - :
S+ Zfi,m pi(4) (] — w))?

Hence in the limit S — 0, A is maximal for those dimensions where the
relative variance of the data points with respect to the codebooks is small.
One can now iteratively update the assignments p;(j) and the prototypes and
weights for fixed S and 7. The limit S — 0 allows to study the influence
of different weightings. In order to obtain global optima, the temperature T’
can be annealed from high values with a single optimum to 7" — 0 which
corresponds to the original energy. The cooling schedule has to be very careful
at phase transitions of the clustering in order to allow the prototypes to separate
[5]. One possibility is an exponential schedule with slight increasing of the
temperature and slower cooling if a phase transition is observed.

4. Experiments

Usually, batch-RLVQ will not obtain the same classification results as GRLVQ
since its objective is a minimization of the overall distance of the data from
their nearest prototypes and not optimum classification. However, for many
problems these two objectives will be correlated. Moreover, batch-RLVQ can
avoid local minima if an appropriate annealing schedule is applied in compari-
son to GRLVQ which would require other global minimization methods. Note
that an analogous batch formulation for GRLVQ would not yield explicit for-
mulas for the values p;(j), W/ and Ay in each iteration; rather, an additional
numerical minimization would be necessary in each step. Of course, GRLVQ
could be run starting with the solution provided by batch-RLVQ in order to
optimize the results. In the following, we compare the results of batch-RLVQ
to RLVQ and GRLVQ for various data sets. In each case the classification error
of a randomly selected training and test set is measured. Since they differ by
at most 2% in all cases, we only report one value.

Artificial data without overlap: This data set is as in [1]. It comprises three
almost separated classes with two clusters each. The intrinsic data dimension is
two. However eight dimensions are added to these first two dimensions. Four of
them comprise slightly disturbed copies of the first dimension with increasing
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| data 1 data 2 iris
LVQ 0.81-0.89 0.56-0.7 0.94-0.96
RLVQ 0.9 - 0.96 0.79 - 0.86 (instable) 0.95-0.97
GRLVQ | 0.93-0.97 0.83-0.86 0.96-0.98
batch 0.91-0.95 0.7-0.75 0.91-0.97

Table 1: Portion of correctly classified patterns for various data and the clus-
tering provided by the training algorithms, obtained in several runs

noise, the remaining four dimensions comprise pure noise. We train a clustering
with two codebooks for each class. See Table 1 for the respective accuracies.
Typical weighting vectors are

Arive = (0.13,0.12,0.12,0.11,0.1,0.09, 0.1, 0.08,0.07, 0.06),
Aenive = (0.49,0.4,0.07,0.02,0,0.02,0,0,0,0),
Aoaean = (0.28,0.39,0.09, 0.09,0.04, 0.05,0.02, 0.03, 0.01, 0).

Hence the separation of batch-RLVQ clearly indicates the importance of the
first two dimensions. The ranking of the weighting factors lies between RLVQ
and GRLVQ. The classification accuracy of batch-RLVQ is comparable to
RLVQ, however, the result is much more stable. For RLVQ, pretraining with
LVQ was mandatory for good results, whereas for batch-RLVQ a simultaneous
annealing of both parameters, S and T' does not lead to instabilities.

Artificial data with overlap: This data set, introduced in [1] again, has the
same form as data 1 with the difference that the classes overlap considerably.
Typical weighting vectors which result for the algorithms are

Arive = (0.11,0.12,0.11,0.09, 0.09, 0.09, 0.09, 0.09, 0.1, 0.1),
Aenve = (0.28,0.38,0.3,0.05,0,0,0,0,0,0),
A = (0.35,0.21,0.07, 0.09,0.11,0.1,0.01, 0.03, 0.02, 0.02).

The classification result of batch-RLVQ is a bit worse compared to the other
methods since it does not optimize the decision borders. However, it is still
better than simple LVQ. Moreover, the separation of the first two dimensions
as important is clearly indicated by batch-RLVQ. Simple RLVQ showed insta-
bilities in about a quarter of the runs if it was not pretrained with LVQ and
obtained a ranking with values \y >> \j for k& # 1. In particular, the infor-
mative dimension 2 is neglected. This corresponds to a local optimum of the
energy function EE (S,T) which is reached by batch-RLVQ for fast annealing.
Then, the two codebooks for classes 2 and 3, respectively, do not separate and
hence the underlying distribution is not fitted appropriately with weighting
Apaten = (0.3,0.06,0.3,0.14,0.07,0.05,0.01,0.02,0.05,0.04).

Iris data: In the well known iris data, the task is to separate three classes
of plants based on four numerical values. Vector quantization with six code-
books yields the results reported in Table 1. Weighting factors in the re-
spective cases are Agrvq = (0.04,0.05,0.03,0.87), Aarrve = (0,0,0.4,0.6), and
Abaten = (0.1,0.12,0.53,0.25). Batch-RLVQ yields comparable classification
results. It clearly indicates that the last two dimensions are important as pro-
posed by GRLVQ and rule extraction algorithms like [3].
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5. Conclusions

We have proposed an approximate energy function and a batch version of
RLVQ, an intuitive generalization of LVQ to an adaptive weighting scheme
of the input dimensions. This approach provides theoretical insight into the
behaviour of RLVQ: it describes the limiting behaviour for stable situations;
moreover, it gives hints which local minima might cause bad classification ac-
curacies for RLVQ. The batch formulation can be combined with annealing
schedules such that local minima can be avoided. Hence the result of batch-
RLVQ can be used as a good starting point for modifications which directly
optimize the classification accuracy such as GRLVQ. Note that the objective
of batch-RLVQ itself is minimization of the overall distances which is usually
related to the classification task but might yield worse classification results.
Still in our cases the results are comparable to RLVQ and GRLVQ and better
than simple LVQ due to the adaptive metric.
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