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Abstract. A learning algorithm for multilayer perceptrons is suggested
which relates to the technique of principal component analysis. The
latter is performed with respect to a correlation matrix computed from
the example inputs and their target outputs. For large networks it is
demonstrated that the procedure requires by far fewer examples for good
generalization than traditional on—line training prescriptions.

1 Introduction

Artificial neural networks with complicated input-output relation are often as-
sembled using simple structures which repeat over the network. Thus, the oc-
currence of symmetries is practically inevitable and — as demonstrated within
a variety of learning paradigms — leads to badly generalizing plateau states
[8, 9, 1]. These quasi—stationary configurations can be associated with the
invariance of the network output under permutation of hidden units.

For large networks trained from randomized i.i.d. example inputs, a sta-
tistical physics analysis of on—line gradient descent has been done for various
scenarios. These investigations show that good generalization ability is not
achieved as long as the number of examples is linear in the number of adjustable
parameters. The network is stuck in a plateau state, unless prior knowledge
about the target rule is already built into the initial conditions. Note that
also optimized training schedules or modified on—line algorithms as suggested
in [11, 6, 10, 7] require an unrealistic initial non—trivial initialization.

The purpose of the work is mainly to demonstrate that these findings do
not reflect a genuine difficulty in training multilayer networks, but just result
from the use of inappropriate training schemes.

To this end we propose a novel approach to the supervised training of mul-
tilayer networks which relates to the well-known technique of principal compo-
nent analysis. In contrast to the conventional use of PCA in the preprocessing
of the data, the target outputs enter into the construction of the correlation
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matrix in our approach. Then the PCA allows us to reduce the effective di-
mensionality of the learning problem in a first stage of training. The necessary
specialization can then be done in terms of a few parameters, the number of
which does not increases with the dimensionality of the inputs. As a conse-
quence, good generalization is achievable on the basis of a number of examples
which is only linear in the number of free parameters.

In order to demonstrate the usefulness of the suggested training scheme, we
investigate its typical properties in a statistical physics framework. Note that
the failure of the stochastic gradient descent has been shown within the same
idealized type of scenario.

2 The regression problem

In the following we consider a regression problem, in which an unknown rule
has to be inferred from a set P of P example data (£#,7) where £# denote
N dimensional input vectors. We assume that the corresponding rule output
T = 7(BT¢) can be parameterized in terms of a Soft Committee machine, the
teacher, as (BT ¢) = # Zf; erf (B} €) with orthonormal weight vectors B;.
The use of the error function as a transfer function is convenient for an ana-
lytical treatment of the system. However, this particular choice of the sigmoidal
function should not be crucial for the results obtained in the following.
A more substantial restriction is that of assuming that all input components
;-‘,j =1,2,...N are independently drawn from a Gaussian distribution of zero
mean and unit variance. We will limit the analysis to this particular case but
discuss its significance and ways to relax the restriction in the conclusion.
A first and popular means of extracting information from the example set
is Hebbian learning and a simple calculation yields that the expectation of the
random variable 7(BT¢)¢ is parallel to B,y = # Zf; B;. Thus the Hebbian

vector p
1
Vhrebb = 2 > rHen (1)
p=1

can serve as an estimate of the direction in which the average teacher vector B,y
points. The information obtained by the Hebb rule is obviously not sufficient to
determine K different weight vectors J = [J1, Ja, ..., Jk] in a student network
of matching complexity.

But one can try to obtain additional information from the higher order
statistics of 7(BT¢)¢. A natural extension to Hebbian learning thus is to con-

sider the correlation matrix % 25:1 (7'“)2 ren T More generally, we will use
Cc? = % 25:1 F(r)ererT | where F is some function of the target output.
Whenever numbers are given in the following, we do refer to the special case
F(r) =12.

The usefulness of computing this correlation matrix is easily seen in the
limit P — oo, which yields that the expectation of C* has three different
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eigenvalues: One eigenvalue, Ao = 2 arcsin(2/3), has an N — K dimensional
eigenspace orthogonal to all teacher weight vectors. The eigenvector of the
largest eigenvalue Aunspec = Ao + 8 (K — 1+ 1/V/5) /(3K ) is the averaged
teacher weight vector By,. The eigenspace of the smallest eigenvalue Aspec =
Ao —8(1 —1/v/5)/(3K) is (K — 1) dimensional and spanned by the vectors
B; — Bk (i = 1,2,...,K — 1). So the eigenspace of the smallest eigenvalue
yields additional information about the teacher vectors.

For finite P we thus determine the eigenvectors AT ... AT | of C” which
have the smallest eigenvalues. Then, if P is sufficiently large, the linear space
VP spanned by vl and AT, ... A% _, will approximate the space V>
spanned by the teacher vectors By,...,Bg.

In a second stage, we use an on-line training algorithm to identify the best
approximation of the teacher weight vectors in the space V7. In the case we
focus on, that K is much smaller than N, this two stage procedure achieves a
drastic reduction in the dimensionality of the learning problem from KN to K2
dimensions. It thus reduces, and in the limit N — oo eliminates, the plateau
problem in traditional on-line training.

2.1 Approximation of the teacher space by PCA

The first stage of our procedure obtains an approximation of V> by applying
the eigensystem analysis to the estimator C*. To investigate the quality of the
approximation, we calculate the overlap rspec of its (K — 1) dimensional part
AP =[AT,... A% ] with V°°,

_[TeAP"BBTAP )
Tspec = K _1 )

where B is the matrix with columns Bj,...,Bg. Note that rgye. takes its
maximal value 1 iff the vectors AT,... A% | lie in the space V°°.
To analyze the procedure theoretically, we introduce the Gibbs distribution

exp (—ﬂ JTCPJ)
Z(P) ’

where the integral is over the unit sphere. In the limit 5 — oo, the distribution
is dominated by the eigenvector J* of C* with the smallest eigenvalue. We
denote the overlaps of J* with the teacher vectors by R* = BT J*.

In the limit N — oo, P = aK N, using the replica trick a statistical physics
calculation [5] yields the typical value of R* as the solution of the following
variational problem

P(J)=

Z(P) = /dJ exp(—=BJECT ), (3)

R*(a,K) = arg max (mvin RT A(a, )R + a(a,'y)> (4)

using G(r(y)) = @ | A (a,7) = —aK (G(r(y)) (gsue — 650)), — 3

and a(a,y) = —aK (G(T(y))>y+%, where the angle brackets denote an average
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Figure 1: left, K = 3: Left axis: 7spec for N = 400 (0) and N = 1600 (®). Right
axis: eg found when the two stages of our procedure are combined, N = 400 (O)
and N = 1600 (m), « refers to the number of examples in both training sets, a =
(P+P)/KN. Full lines: theoretical prediction for the thermodynamic limit N — oo.
Where not shown, error bars are smaller than the symbol size. right, K = 7, using
the optimized C*: rspec (0) and ¢ (0) for N = 2000. Full lines: Theoretical curves
found in the large K limit. Inset: histogram of the 200 smallest eigenvalues of C* for
a single training set P with P = 22K N. A gap separates the 6 smallest eigenvalues
from the rest of the spectrum. The range of the eigenvalues shown is [—0.1, —0.07]

over the K-dimensional random variable y with i.i.d. Gaussian components with
zero mean and unit variance.

Since (4) is quadratic in R, the extremal problem has a solution with R* # 0
only if A is singular. From the symmetries one easily obtains, that A has just
two eigenvalues. The first is A;; — Ay, its degeneracy is K — 1 and it is
the relevant eigenvalue in our case. The degeneracy shows that the difference
between the K — 1 smallest eigenvalues of C” vanishes for large N. So in
the thermodynamic limit, the simple procedure of analyzing the properties of
the vector J* minimizing JTC¥ J, in fact, yields the properties of the K — 1
eigenvectors to the smallest eigenvalues of C”. Thus, the theoretical prediction
of the quantity repec defined in (2) for an example set of size a KN is just the
Euclidean norm of R*(a, K).

We find that the resulting rgpec(c, K) is nonzero only for a > a.(K). Above
this critical value, Monte Carlo simulations show excellent agreement with the
theoretical prediction. Fig.1 (left panel) shows as an example the results ob-
tained for K = 3 where a.(3) = 8.70.

In the limit of large K, but K < N, the variational problem can be simpli-
fied using the central limit theorem, see [3] for details of this calculation. The
large K expansion yields that a.(K) diverges as

) = 27arcsin2(2/3g X
16 (1 —1/V/5)

Also for large K, one can show that the optimal choice for F' is not F(1) =
72, but F(r) = 7> — A3 (Fig.1,right). This optimal choice reduces a. to 2/3 of

(5)
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the value given in (5).

2.2 Choosing weight vectors

The results of the previous section show that for a > a.(K) the eigenvectors A”
of the K — 1 smallest eigenvalues of C” supplement the information obtained
by the Hebbian vector (1). So in V* (spanned by the AF and v],;, ) a student
network J can be found which generalizes well in terms of the quadratic error

(1) = 3 (177 ~r(BTE)") .

To actually find such a student network we set J = BT, where the basis

B = AT, ... AT, vl.,.] and optimize the KxK parameter matrix [' by
on-line gradient descent. For theoretical convenience, we use an independent
training set P not contained in P. So after the presentation of the v-th e2xample
in P the matrix T+ is T*+1 = T* 4 V1 ( (TvTBTevy — (BTg")) With
increasing N, we can now scale the learning rate 7 and the number of additional
examples P such that: n - 0, K2 < nP but P <« P. Then, in the large N
limit, the on-line procedure performs gradient descent in € (1n the restricted
space), reaches a minimum but uses a negligible number of additional examples.

So, for large N, the theoretical prediction €z op¢(cr, ) for the generalization
error of a student found by running the on-line procedure is given by the
minimum of ¢, in VP. To calculate its value we need rspec and the fact that the
normalized overlap of the Hebbian vector vﬁebb with the teacher average B,y

} ~1/2
is Tunspec(a, K) = (1 + 3““0;;(71}((2/3)) . Then €z 0pt(a, K) may be calculated

using the explicit expression for €g(.J) given in [§].

In Fig.1, the generalization error obtained in our simulations is compared to
€g,0pt- Lhe bend in the curve of the generalization error approximately at the
critical value of « indicates that the on-line procedure leads to a specialization
of the weight vectors for a > a¢(K).

3 Conclusion

We have shown that for fixed K committee machines can be efficiently learned
from a number of examples which scales linearly in N if the input distribution
is isotropic. This is in contrast to the findings in the case of stochastic gradient
descent schemes for this scaling of the training set size. There, only a sub-
optimally generalizing plateau state is reached, if the training set is sampled
without replacement. (Despite recent theoretical efforts [4], the situation is
still unclear for sampling with replacement or even batch learning.) Thus our
findings indicate that the difficulties encountered in on-line learning result from
the limited power of such algorithms and not from any intrinsic difficulties of
the learning problem for these architectures. Note that our algorithm can be
extended to classification tasks [3]. Further, since the eigenvalue spectrum of
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the correlation matrix C* has a gap separating the K — 1 lowest eigenvalues
(inset of Fig.1), the number of hidden units can in fact be determined from
CP. Thus our algorithm also contributes to the problem of model selection.
Of course, from a practical point of view, it is highly unrealistic to assume
isotropic inputs. With regard to second order statistics this can be easily
fixed by whitening the inputs. Interestingly we have found that whitening can
improve the performance of our algorithm even when the inputs sample an
isotropic Gaussian since the empirical distribution on a finite sample is by no
means isotropic. However, given the NP-completeness of the loading problem
already for very simple multilayer networks ( e.g. [2]), one should not expect
that our algorithm handles any input distribution well. It remains to be seen
whether such malicious distributions play a major réle in practical applications.
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