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Abstract. Principal curves are extensions of Principal Component Anal-
ysis and are smooth curves which pass through the middle of a data set.
We extend the method so that, on pairs of data sets which have under-
lying nonlinear correlations, we have pairs of curves which go through
the ’'centre’ of data sets in such a way that the nonlinear correlations
between the data sets are captured. We relate this method to Canonical
Correlation Analysis and give an illustrative example of this method on
artificial data before applying it as a forecasting method on a real data
set.

1 Introduction

Canonical Correlation Analysis (CCA) is a statistical technique for estimating
the linear combination of a data set which gives the greatest correlation with
a linear combination of a second data set. Let x1 be a vector drawn from the
first data set and let x5 be the corresponding vector drawn from the second
data set. Then CCA attempts to estimate w; and wo such that y; = wix;
and y» = W2T Xo have the greatest correlation over the whole set of samples x;
and x2. We have previously developed neural algorithms [2, 6, 8] for performing
CCA; the neural algorithms have certain advantages over standard statistical
techniques including the ability to find nonlinear projections of a data set which
maximise correlations. We have also used the neural algorithms for forecasting
[7]: one data set is the previous samples of a time series, the other is the sample(s)
which one wishes to predict.

In this paper, we present an extension of Principal Curves which performs
a type of non-parametric CCA and illustrate its use on artificial data. We then
use the method to forecast on a financial data set which we have previously [3]
used to test other forecasting methods.

2 Twinned Principal Curves

Principal Component Analysis (PCA) is a standard statistical technique for
finding a lower dimensional linear projection of high dimensional data which
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gives minimum mean square error over all projections of this dimensionality.
Principal Curves [4,5,1] is an extension of this method in which a nonlinear
manifold can be used instead of the linear subspace determined by PCA. However
there is clearly a difficulty with this in that it is always possible to fit a finite
training set with no error. There are several definitions of Principal Curves which
constrain the curves in one way or another to overcome the problem of overfitting.
In [4], every point, P, on the curve is the mean of the points that project onto
P. This is known as self-consistency. The unit-speed curve (one whose derivative
has norm 1) which satisfies this is the Principal Curve. In [5], the Principal Curve
is defined as the curve of a specific length which minimises the mean squared
distance from the data.

In this paper, we extend the Principal Curve method so that we now find a
nonlinear manifold in each of two data sets. We use a non-parametric method
to determine the two manifolds. Since we are drawing data iid from two data
sets simultaneously, our method creates manifolds which exhibit a correlation
between corresponding points on the manifolds which we can then use to subse-
quently forecast a sample from one data set given a sample from the other. The
algorithm in outline is

1. With the current projections di and dj, Vi, '

2. Select x| from the first data set and the corresponding point, X% from the
second data set.

3. Find all neighbours of the point which have

— projections close to the projections of the chosen point.

— projections of their corresponding points in the other data set satisfying
the same constraint with respect to the second data set. Note that these
projections will be to different curves. )

4. Thus, if d} is the projection of x| and d) is the projection of x4, then

Si={k:|d¥ —di| < e and |d — di| < 2} ' ' '

5. Find the local average of points projecting close to x] and x%. i.e. d} (new) =

Mean of df,j € S; and dj(new) = Mean of d3,j € S;

6. Return to Step 1.

7. dt = di(new) and di = di(new), Vi.

The algorithm iterates till a stopping criteria is met: either the algorithm repeats
for a set number of rounds or till the number of nodes to which the data is
projected reaches a certain number (see below) or till the mean square error
reaches a particular value.

Finally the algorithm is initialised with the projections being to the first
Principal Component of each data set. Clearly there are extensions which can
be made to this algorithm. For example it is possible to change the value of the
width parameters €; and e; during the course of the iterations, though this is
not implemented in the simulations discussed in this paper for reasons which
will become clear in the next section. Also, the use of a weighted average rather
than a simple average may improve the accuracy of the new projections. Finally,
the algorithm tends to draw data from the extremes of the principal curve and
so some additional local averaging may be useful in this case. Again the last two
points are not implemented in the results discussed in this paper.
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3 Properties of Twinned Principal Curves

This is a somewhat different algorithm from that suggested by [4] or [5] in that
it iteratively uses a kernel smoother rather than attempting to approximate a
principal curve by a mixture of straight lines. However it has a rather nice prop-
erty of sparsification of the projections: the local averaging provides a smoothing
of the data set and since we keep the values of €; and e; constant during the
course of the simulation this smoothing progressively works out from each data
point resulting in fewer and fewer projections onto the principal curve (compare
the central two rows in Figure 1). We may use this property to allow the number
of distinct nodes we seek to determine the value of €; and e> (or vice-versa).

It is worth noting also that this algorithm is able to deal with data sets which
standard Principal Curve algorithms find difficult: the very fact of having two
data sets with which to work simultaneously alleviates several problems. For
example, since we initialise with a PCA and one of our data sets is circular, any
diameter of the circle may be a Principal Component direction. This unfortu-
nately means that points on opposite sides of the circle project onto the same
part of the eigenvector and so we often have an initial twisting of the Principal
Curve as it moves from the centre of mass on one side of the circle to the cen-
tre of mass on the other side, these centres of mass being caused by the finite
numbers of samples. However, we only consider points to be local to the current
point if they are local in both projections. This makes it much less likely that
false neighbours will be chosen.

Finally, CCA maximises the correlation between two data sets under the
constraint that the variance of y; = wlTxl and yo = W2TX2 are both 1. Twinned
Principal Curves can still meet this criterion; having found our sum of linear ap-
proximators, we may project new samples onto these Twinned Principal Curves
and calculate the variance of the resultant projections. In calculating new cor-
relations, we may simply then divide each of y; and y» by their corresponding
standard deviations.

4 Experiments

4.1 Artificial data

We first create 2 sets of two dimensional artificial data which are known to have
a correlation from x1(t) = sin(t) + p1, y1 (t) = cos(t) + p2, 22(t) =t + p3,ya2(t) =
L+ sin(t) + pg where ¢ is drawn from a uniform distribution in [0,27] and
wi N(0,0.2) is Gaussian noise. Examples of this data are shown in the top row
of Figure 1.

Figure 1 also shows the thinning which takes place in data set 2 after 1, 2 and
10 iterations and in data set 1 after 10 iterations. The sparsification discussed
above is clearly evident.

Now we may use these projections to predict the position of a point, X3,
in data set 2 given its corresponding point x; in data set 1. Typically we will
approximate the principal curves with the sum of linear projections given by
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Fig. 1. The top two diagrams show samples from the data sets. The middle diagrams
show the first and second projections of the second data set. The third row shows the
projections of both data sets after 10 iterations. The last row shows the results of fore-
casting the positions of points in data set 2 given only the position of the corresponding
point in data set 1.
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joining the sparse points as shown in the last row of Figure 1. To forecast, we
project x; onto the current principal curve of the first data set and use the
corresponding point on the current principal curve of the second data as the
predictor of x5. Typical results are shown in the last row of Figure 1, the ”*” on
the curve being the predictor while the ”+” shows the point’s actual position.

4.2 Forecasting

The problem we have modelled is a forecasting one: given the last few days’
exchange rates (U.S. dollar against Japanese yen), is it possible to forecast the
next day’s exchange rate with some degree of accuracy? We have previously [3]
used a variety of methods to find the underlying factors in this data set and then
used a standard multilayered perceptron using backpropagation to predict each
factor separately. To test our multilayered perceptron, we have split the data set
into two sets: 1706 samples were used as the training data and 1706 for the test
data. Each training input comprised a particular day’s exchange rate plus the
previous n days’ exchange rates where values of n ranged from 5 to 25. With the
current algorithm, we can simultaneously forecast as many days in advance as
we wish, since our second principal curve can be as high dimensional as we wish.
Typical results in terms of Mean Absolute Percentage Error on the test set are
given in Table 1.

Knot points|Day 1 Day 2 Day 3 Day 4 Dayb

57 1.0006 1.1086 1.2103 1.3035 1.4022

408 0.7413 0.9158 1.0685 1.1863 1.2887

607 0.6711 0.7939 0.9018 1.0197 1.0880
Table 1. The first column gives the number of knot points and the others give the
mean absolute percentage error on a test data set predicting 1 to 5 days ahead.

5 Conclusion

We have shown that the Principal Curve method can be extended to work on two
data sets simultaneously and that using two data sets is, in fact, advantageous
in that there is less chance of two projections simultaneously misleading than
there is of a single projection being misleading. Also when we use this algorithm
to forecast, we have the advantage that it is very simple to forecast a number of
days ahead simultaneously: this simply increases the dimensionality of the space
through which the second principal curve moves. The results from the foreasting
were comparable to that from our previous methods [3] and were considerably
easier to achieve: we performed no optimisation to get the reported results and
found comparable results over a wide range of parameter values.
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