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Abstract. In this paper, we extend several well known clustering meth-
ods including the neural methods known collectively as Self Organising
Maps in two ways: the first uses an e-insensitive version which is based
on minimising the least absolute error on the data set; the second maps
the data into a feature space before performing the necessary clustering.
We give comparative results on astronomical data.

1 Introduction

In this paper, we compare various standard clustering methods with a recent
variant of such methods which we call e-insensitive clustering and a set of
methods which are used in a nonlinear feature space which are known as Kernel
methods.

We will not describe the basic methods for reasons of space and because they
are very well known: they are k-means clustering [11], mixture of Gaussians
[2], Kohonen’s Self Organising Map (SOM) [8], Grossberg’s ART [4] and the
Generative Topographic Mapping (GTM) [3].

We first describe the new methods and then give comparative results on
astronomical data.

2 e-Insensitive Clustering

We have extended both the SOM and a variant known as the Scale Invariant
Map (SIM) [5] with the e-insensitive learning rule [6] which was developed in
the context of projection networks. In this paper, we use the method with
clustering networks. This changes the learning rule of these networks from
being based on Least Mean Square Error to Least Absolute Error, and there is
also an insensitive region in the function where learning will stop if the weight
is close enough to the data point. This is useful in that, when a set of weights
has almost converged, we do not have to waste computational resources on
small changes which are liable to be just moving the weights slightly back and
forth round the optimal values.
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2.1 eInsensitive Self-Organizing Map
The e-insensitive Self-Organising Map(e-SOM) has the following algorithm.
1. Randomly select a vector from the input distribution

2. A winning weight vector, w,, is selected which is closest of all the weight
vectors to the input and the neighbourhood function, h; is calculated Vi.

3. All weight vectors in the neighbourhood are updated using the learning

rule | |
. _10 if [|2; —wej|| <€
Awu - { T}-hci(Sign(l'j — wcj)) otherwise 1)

The value of € can change during learning; if it is set to zero the weight
update is linear. The learning rule is less affected by outliers, since the move-
ment of the weight towards the outlier has the same effect on the weight as
the movement to a closer point which is unlike the LMS rule used in the SOM.
Figure 1 shows the difference between the e-SOM and the SOM on an artificial
data set of three clusters; the e-SOM has much fewer redundant nodes in the
lattice and yet is still topology preserving in the clusters. We can see in Figure
1 that the e-SOM has only 6 redundant centres (centres outside any cluster)
whereas the SOM (right figure) has many redundant centres.

An interesting effect in the mapping is found by increasing the value of €
during learning. By setting € to 0 and training the network till a reasonable
mapping has been achieved then increasing the value of € and continuing learn-
ing, we can move the previously redundant nodes in the map to cover an area
of the data space as only the redundant nodes move. As this happens the data
space will be covered by those nodes which were previously redundant, but
they will still remain topology preserving, as the neighbourhood function will
still adjust the position of non-redundant nodes, close to the redundant one
which just moved.

An e-insensitive version of the SIM is similarly defined.

3 Kernel K-means Clustering

The set of methods known under the generic title of Kernel Methods use a
nonlinear mapping to map data into a high dimensional feature space in which
linear operations are performed. This gives us the computational advantages of
linear methods but also the representational advantages of nonlinear methods.
The result is a very efficient method of performing nonlinear operations on a
data set. In more detail, let ¢(x) be the nonlinear function which maps the
data into feature space, F. Then in F,we can define a matrix, K, in terms
of a dot product in that space i.e. K(i,7) = ¢(x;).¢(x;). Typically we select
the matrix K based on our knowledge of the properties of the matrix rather
than any knowledge of the function ¢(). The kernel trick allows us to define
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Figure 1: The left graph shows e-Insensitive SOM trained on three clusters.
€ was initially zero, and then gradually increased. There are far fewer redun-
dant nodes and still the network is topology preserving inside and between the
clusters compared with the right graph showing a SOM trained on the three
cluster data set.

every operation in feature space in terms of the kernel matrix rather than the
nonlinear function, ¢().

In kernelising the k-means algorithm, we will follow the derivation of [12].
The aim is to find k means, m,, so that each point is close to one of the means.
Now, each mean may be described as lying in the manifold spanned by the
observations, ¢(x;) i.e. my, = 3. v,i$(x;). Now the k means algorithm choses
the means, m,,, to minimise the Euclidean distance between the points and the
closest mean

16(x) — my[”

l|¢(x) — Z%M(Xi)HQ

= k(%) =2 k(% %) + Y VuiVui k(i X5)

1,3

i.e. the distance calculation can be accompished in Kernel space by means of
the K matrix alone.

Let M;, be the cluster assignment variable. i.e. M;, = 1if ¢(x;) is in the
ut? cluster and is 0 otherwise. [12] initialise the means to the first training
patterns and then each new training point, ¢(x¢y1),t + 1 > k, is assigned to
the closest mean and its cluster assignment variable calculated using

{ 1 if |[¢(xe1) — mal| < ||(xe41) — my||, Vi # o @)

M = .
tHHla 0 otherwise

In terms of the kernel function (noting that k(x,x) is common to all calcula-
tions) we have

1 if Zz’,j ’Yai’Yajk(Xi, xj) -2 Ez Yaiko (%, x;)
Mit1,0 = <D YuiTuik(Xiy x5) = 232, vuik(x,%x;), Vi # a (3)
0 otherwise
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We must then update the mean, m,, to take account of the (¢ + 1)** data point
m{ = mj, + ((¢(x¢41) — m}) (4)

where we have used the term m%F! to designate the updated mean which takes
into account the new data point and

(= Et+1 M (5)
Now (4) may be written as
Z ’Yt+1 Z 7az¢ XZ + C Xt-i-l Z ’Yaz(b xl
which leads to an update equation of
t .
t+1 V1 —=() fori#t+1
Tai _{ ¢ fori=t+1 (©)

This algorithm is the basis of the next two algorithms.

4 The Kernel Self Organising Map

Now the SOM algorithm is a k means algorithm with an attempt to distribute
the means in an organised manner and so the first change to the above algorithm
is to update the closest neuron’s weights and those of its neighbours. Thus we
find the winning neuron (the closest in feature space) as above but now instead
of (3), we use

Miy1,u = Aa, p) (7)

where « is the identifier of the closest neuron. Now the rest of the algorithm
can be performed as before. However there is one difficulty with this: the SOM

. . ) . Myt o
requires a great number of iterations for convergence and since ( = =42 —
S YA

this leads naturally to ( — 0 over time. To obviate this problem, we 1n1t1a11y
select a number of centres, k¥ and train the centres with one pass through the
data set in a random order. We then have a partially ordered set of centres.
We now reset all values of M; , to zero and perform a second pass through the
data set, typically also decreasing the width of the neighbourhood function as
with the normal Kohonen SOM.

To select the centre (or mean) which is closest to the grid point, we again
work in feature space and calculate

a = argmin||¢(x) —my|? 8)
which in terms of the kernel function may be written as

= i ik(xi,x) — 2 ik (%, x; 9
& argm;n;'yu (xi,%) ;'Yu (x,%x;) 9)
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SOM 88%

GTM 89%
Scale-invariant 72%
k-means 83%

Mixture of Gaussians 85%
e-insensitive SOM 89%
e-insensitive Scale-invariant 73%
Kernel ART 84%
Kernel-SOM 92%

Table 1: Classification results of the SOM, GTM, scale-invariant map, k-means,
mixture of Gaussian, and e-insensitive methods on extended Tholen classes of
Data.

The ART algorithm may be similarly kernelised; it has the advantage that,
using Gaussian kernels, a separate vigilance parameter is not necessary since
the projected points all lie on the surface of a sphere since K (x,x) = 1.

5 Comparison on Astronomical Data

We now compare the clustering methods on astronomical data composed of a
mixture of the 52-colour survey by Bell et al. [1] together with the 8-colour
survey conducted by Zellner et al. [14] providing a set of asteroid spectra
spanning 0.3-2.5mm. When this extended data set was compared by [10] to
the results in Tholen [13] it was found that the additional refinement to the
spectra lead to more classes in the taxonomy produced by Tholen. This was
chosen as [7] showed the extended classification gave greater accuracy. The
quantification of the accuracy of each of the networks was obtained by leave
one out jack-knifing of the data.

We have previously compared the GTM, SOM and scale-invariant map on
this data set [9]. Three networks used previously were the GTM, SOM and
scale-invariant networks. We now augment these with the e-insensitive clus-
tering algorithms and the kernel versions. Results are shown in Table 1. The
asteroid 308 Polyxo was consistently misclassified even when it was included in
the training set. The other correct classifications show that the networks have
managed to produce general classifiers.

Misclassification is counted where two or more asteroid types are assigned
to one node (with the GTM a misclassification is where the means of two classes
are within a predefined radius - 0.05) . We see that the e-insensitive methods
show a slight improvement over the standard methods but the kernel methods
make a huge improvement.
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