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Abstract: In this paper, we review an extension of the learning rules in a 
Principal Component Analysis network which has been derived to be optimal 
for a specific probability density function. We note that this probability density 
function is one of a family of pdfs and investigate the learning rules formed in 
order to be optimal for several members of this family. We show that, whereas 
previous authors [5] have viewed the single member of the family as an 
extension of PCA, it is more appropriate to view the whole family of learning 
rules as methods of performing Exploratory Projection Pursuit. We illustrate 
this on artificial data sets.  

 
 

1. Introduction 
 
Principal Component Analysis (PCA) is a standard statistical technique for 
compressing data; it can be shown to give the best linear compression of the data in 
terms of least mean square error. There are several artificial neural networks which 
have been shown to perform PCA e.g. [8, 9]. We shall be most interested in a 
negative feedback implementation [3]. 
The basic PCA network [3] is described by equations (1)-(3). Let us have an N-
dimensional input vector at time t, x(t), and an M-dimensional output vector, y, 

with ijW  being the weight linking input j to output i. η  is a learning rate. Then the 

activation passing and learning is described by 
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The weights converge to the Principal Component directions. 
 
Exploratory Projection Pursuit (EPP) is a more recent statistical method aimed at 
solving the difficult problem of identifying structure in high dimensional data. It does 
this by projecting the data onto a low dimensional subspace in which we search for its 
structure by eye. However not all projections will reveal the data's structure equally 
well. We therefore define an index that measures how “interesting'' a given projection 
is, and then represent the data in terms of projections that maximise that index. Now 
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“interesting'' structure is usually defined with respect to the fact that most projections 
of high-dimensional data onto arbitrary lines through most multi-dimensional data 
give almost Gaussian distributions [2]. Therefore if we wish to identify “interesting'' 
features in data, we should look for those directions onto which the data-projections 
are as far from the Gaussian as possible.  
In this paper, we derive a neural method of performing Exploratory Projection Pursuit 
from a probabilistic perspective. 
 

2. Maximum Likelihood Hebbian Learning 
 
It has been shown [11] that the learning rule 
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can be derived as an approximation to the best linear compression of the data. 
Thus we may start with a cost function 
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(5)                                       
which we minimise to get the rule(4). [5] used the residual in (5) to define a cost 
function of the residual 

( )yxe WffJ −== 11 )(                                                                                         (6) 

where 
2

1 .=f  is the (squared) Euclidean norm in the standard PCA rule.  

We may show [1] that the minimization of J is equivalent to minimizing the negative 
log probability of the residual, ,e  if e is Gaussian. 
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Then we can denote a general cost function associated with this network as 

KpJ +=−= 2)()(log ee                                                                (8) 

where K is a constant. Therefore performing gradient descent on J we have 
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where we have discarded a less important term (see [7] for details).In general [10], the 
minimisation of such a cost function may be thought to make the probability of the 
residuals greater dependent on the pdf of the residuals. Thus if the probability density 
function of the residuals is known, this knowledge can be used to determine the 
optimal cost function which in turn gives an optimal learning rule. This suggests a 
family of learning rules which are derived from the family of exponential 
distributions. Let the residual after feedback have probability density function 
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Then we can denote a general cost function associated with this network as 

KpJ p +=−= ||)(log ee                                                              (11)  

where K is a constant. Therefore performing gradient descent on J we have 
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where T denotes the transpose of a vector.  We would expect that for leptokurtotic 
residuals (more kurtotic than a Gaussian distribution), values of p<2 would be 
appropriate, while for platykurtotic residuals (less kurtotic than a Gaussian), values of 
p>2 would be appropriate. It is a common belief in the ICA community [6] that it is 
less important to get exactly the correct distribution when searching for a specific 
source than it is to get an approximately correct distribution i.e. all supergaussian 
signals can be retrieved using a generic leptokurtotic distribution and all subgaussian 
signals can be retrieved using a generic platykurtotic distribution. Our experiments 
will tend to support this belief to some extent but we often find accuracy and speed of 
convergence are improved when we are accurate in our choice of p. 
Therefore the network operation is as before except: 

Weight change:                  ( ) 1||.. −=∆ p
jjiij eesignyW η                                   (13)  

[5] described their rule as performing a type of PCA, but this is not strictly true since 
only the original Hebbian rule (3) actually performs PCA. By maximising the 
likelihood of the residual with respect to the actual distribution, we are matching the 
learning rule to the pdf of the residual. We may thus link the method to the standard 
statistical method of Exploratory Projection Pursuit. Now the nature and 
quantification of the interestingness is in terms of how likely the residuals are under a 
particular model of the pdf of the residuals. 
 

 3. Experimental Results  
 
To illustrate our method, we follow [4] in creating artificial data sets, each of 10 
dimensions. All results reported are based on a set of 10 simulations each with 
different initial conditions. It is our general finding that sphering is necessary to get 
the most accurate results presented below. 
In the first data set, we have 9 leptokurtotic dimensions and one gaussian dimension; 
this is almost the opposite of the standard EPP data sets described in [4] and is rather 
far from being a typical data set in that most of the directions in terms of its natural 
basis are non-Gaussian. However, since we wish to investigate our new models, it is a 
good test set since we can easily see the results of our method. We wish to identify 
the single Gaussian dimension and ignore the leptokurtotic dimensions. The 
leptokurtotic dimensions may be characterised as having long tails; if a residual can 
be created by removing the Gaussian direction from the data set, the residual will 
automatically be leptokurtotic. Thus we consider maximising the likelihood of the 
residual using the model 
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We have experimented with a number of values of p and report on simulations with 
p=1.5.  A typical result is shown in Figure 1; the Gaussian direction is clearly 
identified. 

 
 

Figure 1: The Gaussian direction was the third among 9 leptokurtotic dimensions. It has clearly 
been identified in this Hinton map of the weights. 

 
We have similar results with a data set containing 9 platykurtotic dimensions and one 
Gaussian dimension. We use the same learning rules as before but with a value of 
p=3. If our data set consists of 9 Gaussian dimensions and 1 leptokurtotic dimension, 
we can identify the leptokurtotic dimension with a rule using  p>2. This is really 
saying that all residuals will be unlikely using this model but that the leptokurtotic 
dimension is more wrong under the platykurtotic model than the Gaussian dimensions 
and should be removed from the residual. In the next section, we derive an alternative 
method for this data set. 
 

4. Minimum Likelihood Hebbian Learning 

Just as the Hebbian learning rule has an opposite known as the anti-hebbian rule, we 
may change our rules so that 
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Now we may argue that, in doing so, we are aiming to minimise the likelihood of the 
residual given the current model. In detail, if the residual has probability density 
function 

)||exp(
1

)( p

Z
p ee −= .                                                (16) 

and we denote the general cost function associated with this network as 

KpJ p +=−= ||)(log ee                                                 (17) 

where K is a constant, we may perform gradient ascent on J to get  
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We are thus using our learning rules to make the residuals as unlikely as possible 
under the current model assumptions (determined by the p parameter). Thus when we 
have 9 Gaussian dimensions and 1 platykurtotic dimension we get results as in Figure 
2 (with p=3 in our minimum likelihood rule). By identifying and removing the 
platykurtotic dimension we are leaving a residual which has 0 kurtosis.  
 

 
 

Figure 2:  The platykurtotic dimension has been identified among the gaussian dimensions. 
 
Note that with Minimum Likelihood Hebbian learning we are using the correct model 
for the distribution that we are seeking but minimising the probability of the residual 
being taken from this distribution. Thus we find and extract this distribution. 
 

5. Discussion 
 
In this paper, we have restricted our learning rules to those drawn from the 
exponential family of distributions. All of the artificial data sets above also came from 
this family of distributions and we might legitimately ask whether these rules will 
work on data sets which are not drawn from this family. For example, the last data set 
was slightly changed to 9 Gaussian dimensions and one drawn from the Beta(2,2) 
distribution. We chose the Beta distribution since it is very malleable and we chose 
these parameters since it is then not unlike a Gaussian in shape. 
Using  p=3 in our family of rules we consistently found the beta distribution. We 
might go on to ask whether the beta distribution has to be mixed with Gaussian 
distributions and so we create a similar data set with 9 platykurtotic exponential 
dimensions  and one beta function dimension, •(0.5, 0,5). We have used Minimum 
Likelihood learning and p=3 to find the • distribution. Since the • function has a non 
zero mean, this mean has been subtracted from the data. 
We used these values of the • parameters since the difference in kurtosis between the 
platykurtotic dimensions and the beta dimension is very small, ~ 0.1 (see Table 1) 
 

Dim 1 2 3 4 5 6 7 8 9 10 

Kurt 1.37 1.38 1.49 1.38 1.38 1.37 1.38 1.39 1.38 1.38 

 
Table 1. The single • dimension (Dimension 3) has slightly more kurtosis than the others. 
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In conclusion, we have derived a family of learning rules based on the probability 
density function of the residuals. This family of rules may be called Hebbian in that 
all use a simple multiplication of the output of the neural network with some function 
of the residuals after feedback. The power of the method comes from the choice of an 
appropriate function. In particular, we showed how to choose a function to maximise 
the likelihood of the residuals under particular models of probability density 
functions. We now see that both the original PCA rule and the •-insensitive rule [5] 
are merely particular cases of this class of rules. We have also shown that the rules are 
more akin to Exploratory Projection Pursuit and prefer to call them Maximum 
Likelihood Hebbian learning, believing that ‘•-insensitive PCA’ does not do justice to 
the power of the method. We have also shown how powerful Minimum Likelihood 
Hebbian learning is and indeed that this is, in some sense, even more closely related 
to EPP: the real power of these learning rules is in the context of exploratory data 
analysis. These are powerful new tools for the data mining community and should 
take their place along with existing exploratory methods.  
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