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Abstract. Previous research has shown how the Unstable Periodic Or-
bits (UPOs) embedded in a chaotic attractor can be made to correspond
to self-organised dynamic memory states in a chaotic neural network [2].
This paper demonstrates how this chaotic neural network model can be
extended to enable it to adapt to dynamic input patterns using two un-
supervised learning rules. The proposed learning rules are designed to
modify model parameters in order to support the network’s dynamics
from which the memories emerge. This means that input weights and
feedback delays are adapted so that the network will stabilise an appro-
priate UPO in response to each input signal.

1 Introduction

The research presented in this paper attempts to identify and model ways to
store information in dynamic, chaotic neural networks. The justification for this
research is given by both biological as well as theoretical motivations [1, 3, 2].
Firstly, there is substantial support for the use of nonlinear dynamics to study
more complex and interesting behaviours of neuronal networks. Secondly, even
though chaos may seem to be generally undesirable, it has important properties
that may be exploited to store and retrieve information [5]. These include space
filling, the possibility of control via delayed feedback, synchronisation and the
sensitive dependence on initial conditions. In this paper we demonstrate how
these unique properties may be exploited to store information in the dynamic
behaviour of a neural network. Furthermore, we present a novel approach to
neural network adaptation which is based on supporting the dynamics from
which memory states emerge during pattern recognition.

2 Network Architecture

In this paper we present a neural implementation of the continuous delayed
feedback method of chaos control [4]. This implementation is defined by a set
of discrete-time equations which model a three layered network. The first layer
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Figure 1: An overview of the network architecture

is composed of units which receive dynamic input signals from the enwviron-
ment. This input layer is fully connected to the second layer which is made
up of inhibitory units. Each unit in the inhibitory layer is connected to one
chaotic unit in the third layer. Units in the chaotic layer are connected to their
immediate neighbours via lateral connections. A complete description of this
network is given in [2]. An overview of the network architecture is shown in
Figure 1.

The activation y;(¢) of unit ¢ on the chaotic layer is determined by the
following equations:

N;
Gt +1) = (1= Don®) - afu0) +a) + 2@ ()
yi(t) = gi(t) + ki(t)2i(t) (2)

The chaotic layer can be organised either linearly, so that each unit has
at most two lateral connections with its immediate neighbours, or it can be
organised as a rectangular lattice so that each unit has at most four lateral
connections. The organisation of the chaotic layer becomes significant with
the application of the learning rules given below which enable the network to
develop localised responses so that units in the same region of the chaotic layer
will respond to similar input patterns. The right most term of equation (1)
sums up the input from these lateral connections, with N; denoting the number
of neighbours for unit i. The constant ¢ determines the strength of the lateral
connections relative to the units own chaotic dynamics. The right most term
of equation (2) introduces the control to be applied to this unit (see below).
When this term is zero for a number of time steps, the dynamics of y;(t) are
governed by a chaotic attractor.

Each chaotic unit is associated with one unit in the inhibitory layer. The
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purpose of each inhibitory unit is to apply feedback control to stabilise the
associated chaotic unit into an unstable periodic orbit (UPO). The activation
z;(t) of inhibitory unit ¢ is given by:

0

<
M=
S
<
=
=
=
o~
N
=
=
[
e
—
w
&

Zi (t) =

Mz
g
=
N
o

D
gi(t) — ; §yi(t — (7))

<.
Il
-

where M is the number of input units, w;;(¢) (w;;(t) > 0) is the weight on the
connections from input unit j to inhibitory unit ¢, I;(¢) is the activation of the
jth input unit, D is the number of delayed feedback connections from chaotic
unit ¢ to inhibitory unit i, 7; is the characteristic delay for inhibitory unit 7 and
(1;) denotes the value of 7; rounded to the nearest integer.

The characteristic delays for the inhibitory units are set to random real
values at initialisation. When an input signal is presented to the network, the
inhibitory units are enabled and can apply control to the chaotic units. The
network will select the unit in the inhibitory layer whose characteristic delay
best matches the dominant period of the input sequence. This selection of the
winning unit is made by finding the unit which has the smallest value of h;(t):

M
hi(t) = szj () (L;(8) = Ii(t — (7)) (4)

The Characteristic delay of the winning unit is denoted by 7y,:,. All in-
hibitory units ¢ whose values of (r;) are equal to (7)) can apply control to
their chaotic units. This is achieved through the following equation:

) _ 0 : <Ti>7é<7'win>
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where v (v < 0) is the optimum value that k; can have for effective control to
be applied to the chaotic unit(see [4] for a discussion of optimal values for the
feedback strength k;).

3 Adaptation

The network architecture presented in Section 2 generates internal dynamic
recognition states (UPOs) which are associated with the dynamics present in
the input signals. In this approach, memories are not stored as distributed
patterns of weights between units, as is commonly used with artificial neural
networks. Instead, memory states emerge from the dynamics of the network.
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Consequently, conventional approaches to network adaptation, which are cen-
tred on weight adaptation, cannot be applied in this model. In this section we
present a novel approach to adaptation which is based on modifying network
parameters in order to support the dynamics from which the memory states
emerge.

The profile of characteristic delays across the inhibitory units determines
which UPOs will be stabilised when input is presented to the network. Ini-
tially these delays are randomly selected. Two competitive learning rules are
introduced which enable the network to (i) adapt the weights on the connec-
tions from the input layer to the inhibitory layer so that input signals which are
more commensurate with the characteristic delays of the inhibitory units can be
given a stronger weighting, (ii) tune the characteristic delays to match the fre-
quency profiles of the input signals, and (iii) develop a localised response on the
inhibitory layer so that neighbouring units have similar characteristic delays.
Both learning rules use the concept of a neighbourhood around the winning
unit. This neighbourhood is delimited by a radius R and a maximum reach
M(t). Learning is applied to all units which are within a distance M(t) from
the winning neuron. The distance d;; from unit j to unit ¢ in the inhibitory layer
is defined as the minimum number of connections required to connect them.
The function p(d;;) calculates the direction and magnitude of the changes to
be made to the characteristic delay and input weights of an inhibitory unit i
based on its distance d;; from the winning unit j: p(d;;) = "(77;*7;1]])

The first learning rule, LR1, is concerned with adapting the weights on
the connections from the input layer to the inhibitory layer. It enables an
inhibitory unit to shift weights away from input signals which are not commen-
surate with its characteristic delay, and towards units which are commensurate.
LR1 is expressed by the following equation (Note that for each inhibitory unit

S M wij = M and my;(t) = |I;(t) — L;(t — (m:)))):

Wi (t) : di]’ > M(t)

Wij (t + 1) = wi (t) —p UJi]jV(t) 14 g'wl'j(t)(n')bij(t)( ) : dij <= M(t)
Wip (t)Mip(t

(6)

The second learning rule, LR2, is responsible for tuning the characteristic
delays to match the frequency profiles of the input signals and developing a
localised response on the inhibitory layer so that neighbouring units have sim-
ilar characteristic delays. This is achieved at each iteration by identifying the
period 7;; of the strongest input j to the winning unit ¢. The characteristic
delay of the winning unit is then modified to be closer to the value of 7;;.

At each time step of the evolution of the system the winning inhibitory
unit finds the period 7;; of the input connection with the largest weight w;;(¢).
All units within the maximum reach of the learning rule then modify their
characteristic delays according to the following equation, where i is the index
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Figure 2: The activation time series of selected units

of the winning unit:

B T (t) : di]’ > M(t)
me(t+1) = { T]I:(t) + p(dij)(7ij (1) — 7(t)) = dij <= M(2) "

The following experiment demonstrates how learning rules LR1 and LR2
adapt a 16 unit rectangular layered network (further experimental result are
given in [2]). The network was presented with two input sequences: the first
was period 2 (i.e. input unit I; was presented with the sequence (0, 1, 0, 1,
...), and input unit I with (1, 0, 1, 0, ...)), the other was period 3 (i.e. I; was
presented with (0, 0.5, 1, 0, 0.5, 1, ...) and I, with (1, 0.5, 0, 1, 0.5, 0, ...)).
In each case the input was started at ¢ = 51, and consisted of alternating 100
of the period 2 iterations with 100 of the period 3 iterations. The activations
of units 4, 5, 7 and 9 (shown from the top down) from the chaotic layer are
plotted in Figure 2.

The final values of the characteristic delays for the 16 unit rectangular
network are shown in Figure 3. This figure clearly shows that the inhibitory
layer has been partitioned into units which have (7;) = 2 and units which
have (1;) = 3. Figure 2 shows the activation of two units from each partition.
Unit 4 and 7 have (r;) = 3, and so develop a response to period 3 input by
stabilising a period 6 orbit. Units 5 and 9, on the other hand, have adapted
their characteristic delays so that (r;) = 2, enabling them to respond to a
period 2 input.
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Figure 3: The final values of the characteristic delays

4 Conclusion

The results presented in this paper demonstrate the ability of a discrete neural
network to respond to periodic input by stabilising into an unstable periodic
orbit. Delayed feedback control is used to respond to the period of the input and
the behaviour of the network is affected accordingly. The spatial organisation
of the network makes it possible to allow subsets of neurons to stabilise into
different orbits depending on the presented input. By dynamically modifying
the characteristic delays of the inhibitory units, the system can be trained to
stabilise appropriate orbits. In addition the input weights may be modified to
stabilise the sensitivity of a subset of neurons for a particular input frequency.
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