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Abstract. Building models of dynamical systems on the basis of observed data,
the time grid of the data is typically the same as the time grid of the model. We
show that a refinement of the model time grid relative to a wider-meshed time
grid of the data provides deeper insights into the dynamics. This ”undershooting”
can be derived from the principle of uniform causality. Combining undershoot-
ing with recurrent error correction neural networks [3], lead to anovel approach
which improves the performance of our models by time grid refinements.

1 Introduction
Modeling dynamical systems, the relationship between the model and the data time
grid is an important prestructuring element for the modeling. Regarding time discrete
systems, the model time normally corresponds to that of the data. Alternatively one
may choose a wider-meshed time grid than that of the observed data. As we will show,
recurrent neural networks allow to use a finer model time grid than the data grid.

This paper consists oftwo parts: First, we introduce the concept of uniform causal-
ity (sec. 2), which allows us to refine the model time grid relative to the data. Under-
shooting is a neural network based approach of this principle. Second, we combine
error correction neural networks [3] and undershooting (sec. 3). As we will show in
two empirical studies (forecasting business rentals and foreign exchange rates), the
performance of our models can be improved by this novel approach.

2 Principle of Uniform Causality and Undershooting
Uniform Causality provides the basis for the embedding of time discrete systems.
Using this principle, we are able to forecast on a finer time grid than that of the data.

First let us assume, that we have to identify an autonomous model for a given time
seriess�� s�� s�� � � � � sT . The most obvious approach is to build a discrete time model
where the time grid of the model is equal to the grid of the data:

sn�� � f�sn� � (1)

By iteration off we obtain the flowF

sn � F �s�� n� �� f � � � � � f� �z �
n

�s�� for n � N � (2)
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Here, we reflect on the consequences of a refinement of the model time grid relative to
the data time grid, e. g. modeling annual changes with a� months time step. This can
be seen as an interpolation scheme between discretely measured valuessn (Fig. 1).
There are lots of possible interpolation schemes. Typically, one uses interpolation
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s t

s

Figure 1. Search for a continuous em-
bedding of a discretely measured dy-
namic system.

techniques, e. g. splines, to find a smooth trajectory along the data points. Since we
want to analyze dynamic systems, we introduce the principle of uniform causality
(Eq. 3) in order to further constrain the set of possible interpolations (Fig. 1).

For eachs � Rm andt� t�� t� � R� , theprinciple of uniform causality is given by

embedding: st � f t�s�� additivity: f t��t��s� � f t�
�
f t��s�

�
� (3)

The embedding (Eq. 3) can be satisfied by any continuous interpolation. It is formu-
lated as a continuous iteration [2]. The additivity (Eq. 3) is a description ofcausality.
Intending to follow a dynamics overt� � t�, we can start ats and track the system to
st� � f t��s�. Then, we begin atst� for the rest of the trajectoryst��t� � f t��st��.

For the case oft � N, uniform causality (Eq. 3) is self-evident: the embedding
describes the data and the additivity is a simple iteration of functions. The necessity
of t � R� is a strong additional constraint. Let us assume, that we choosef t as

st � f t�s�� t � ��� �	 � (4)

No matter how small� is, due to both the initialization of the first part of the trajectory
and the additivity of Eq. 3, there is only one way to follow the path in a causal way.

Modeling a dynamical system by an ordinary differential equationds
dt � f�s�, the

principle of uniform causality is always guaranteed:

embedding: st �
R t
�
f�s� �d�

additivity: s� �
R t��t�
�

� � � �
�
s� �

R t�
�
� � �

�
�
R t��t�
t�

� � �

(5)

The embedding is given by the integral of the differential equation and the causal
additivity is the additivity of the integral. For details of the continuous iteration or
continuous embedding of a given time discrete dynamic system see e. g. [2].

We are interested in finding a dynamic law of the discrete dynamics and thus, look
for a uniform causal model fitting the data. In a standard approach, we would identify
f�s� e. g. by using training data such that

sn�� � f�sn�� n � N � (6)

Thus, we can compute the discrete flow�s�� s�� � � �� by iterations off

sn � F �s�� n� � fn�s�� � (7)
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Note, that the standard approach of Eq. 6 only uses a natural numbers as iteration
indices. To introduce rational iterations, we need the following property off :

f tn�s� �
�
f t
�n

�s� � n � N t � R� � (8)

which is a direct consequence of iterating the additivity condition (Eq. 3).
Let us assume, that we are able to identify a functionf

�

q �s� satisfying

sn�� � f
�

q � � � � � f
�

q� �z �
q

�sn� � (9)

This is an iterated system. The parametersf
�

q can be estimated by e. g. using error
backpropagation. We callf

�

q aq-root off . By f
�

q we identify the trajectory for every
rational number to a basis ofq. The embedding and additivity of Eq. 3 are fulfilled,
since operations with rational exponents can be reduced to natural exponents (Eq. 8):

embedding s p

q

� f
p

q �s�� �
�
f

�

q

�p
�s���

additivity f
p�

q
�

p�

q �s�� �
�
f

�

q

�p��p�
�s�� � f

p�

q

�
f

p�

q �s��
� (10)

By increasingq our approach would lead to more and more uniform causal solutions,
but the system identification (Eq. 9) becomes also more difficult [3].

Undershooting is the refinement of the model time grid by recurrent neural net-
works, which is directly related to the considerations on uniform causality. Specifying
an undershooting network (Fig. 2), let us assume, that we want to forecast a price shift
ln�pt���pt�. If we introduce� intermediate time steps (q � 
) in the description of
the dynamics, we obtain the network of Fig. 2, left. This network cannot be trained,
because the intermediate targets are not available. We solve this problem by exploit-
ing the identity ofln�pt���pt� �

P�
k�� ln�pt��k����	�pt�k�	�. This leads to the

network of Fig. 2, right, which directly reflects our considerations on uniform causal-
ity. Applying shared weightsA,C, we introduce an important regularization property
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Figure 2. Undershooting neural networks using unfolding in time and shared weights. For simplicity, the
initializing input of both recurrent networks in Fig. 2 is only given byut using matrixB. The output of the
networks is computed by matrixC. The recursive structure of the dynamics is coded in matrixA.

for the recurrent networks of Fig. 2: We assume the same underlying dynamics for all
sub-intervals. In addition, multiple gradients for each shared weight are generated.
This enables us to estimate our models on the basis of small data sets [3]. The van-
ishing of gradients is a well-know problem in long chains of hidden layers. Here, we
propose to use vario-eta learning, which incorporates a rescaling of the gradients [3].

Empirical Study: Next, we apply undershooting to forecast the annual develop-
ment of business rentals in Munich. Besides the rental prices, the data set consists of
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several economic indicatorsut (e. g. German business cycle, inflation, stock and bond
market indices). We work with annual data from 1982 to 1996. Each raw input is
preprocessed by calculating its scaled momentum (relative change) [3].

We chose a� months model time grid to describe the annual rental dynamics. The
resulting neural network corresponds to Fig. 2, right. As a benchmark, we refer to
a comparable neural network without undershooting. Due to shared weights, both
networks have the same number of parameters [1, 3]. The recurrent neural networks
are trained until convergence by backprogation through time andvario-eta learning
using a batch-size ofk � � and a small learning rate of� � ����� [1, 3].

In Fig. 3 we compare the output of the models to the actual rental price shifts.
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Figure 3. Forecasting annual changes of business rents: A recurrent neural network without undershooting,
left, and an approach with undershooting (similar to Fig. 2), right.

The undershooting neural network (Fig. 3, right) is able to fit the rental dynamics more
accurately. Due to the refinement of the time grid, the forecast error of this network is
much lower than the one of the network without undershooting (Fig. 3, left).

3 Error Correction Networks & Undershooting
We apply error correction neural networks (ECNN) [3] to forecast the British Pound
(BPD) / US-Dollar (USD) FX-rate. The ECNN is appropriate for the modeling of
dynamical systems in the presence of external shocks or noise. The regularization of
the ECNN by undershooting enables us to improve the model performance.

Error Correction Neural Networks (ECNN): Most dynamical systems are partly
autonomous and partly externally driven [3]. For discrete time grids, such a dynamics
can be modeled by a state transitionst�� � f�st� ut� yt � ydt � and an output equation
yt � g�st�. The state transitionst�� is a function of the previous statest, external
influencesut and a comparison between the model outputyt and the observationydt .
If the model erroryt � ydt is zero, we have a perfect description of the dynamics.
However, due unknown external influencesut or noise, our knowledge about the dy-
namics is often limited. We quantify the resulting misspecification of the model by
the model erroryt�ydt at timet. Hence, the model erroryt�ydt serves as an indicator
of short-term effects or external shocks [3].

Using weight matricesA�B�C�D of appropriate dimensions corresponding tos� ,
u� andz� � y� � yd� , a neural network model of the open system can be written as

st�� � tanh�Ast �But �D tanh�Cst � ydt ��
yt � Cst

(11)

�

T

TX
t��

�yt � ydt �
�
� min

A�B�C�D
(12)
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In Eq. 11, the outputyt is computed byCst and compared to the observationydt .
Different dimensions ins� andz� are adjusted byD. The system identification of
Eq. 12 is a parameter optimization task of the weight matricesA�B�C�D [3]. We
solve Eq. 12 by finite unfolding in time using shared weights [1]. Fig. 4 depicts the
resulting neural network. The ECNN (Fig. 4) is understood best by analyzing the
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Figure 4. ECNN using unfolding in time and overshooting. Note, that�Id is a fixed negative identity
matrix. zt�� are output clusters with target values of zero in order to optimize the error correction part.

dependencies ofst�� andst, ut as well aszt � Cst�ydt . At future timet�� , there is
no compensation of the internal expectationsyt�� and thus the system offers forecasts
yt�� � Cst�� . An ECNN forecast is based on a modeling of the autonomous part of
the dynamics (coded inA), external influences (coded inB) and the error correction
mechanism which is also acting as an external input (coded inC andD) [3].

The autonomous part of the ECNN is extended byovershooting [3], i. e. we iterate
matricesA andC in future direction. Overshooting regularizes the learning and thus
may improve the model performance. We supply the additional output clustersyt��
with target values. Because of shared weights, no additional parameters are used [3].

ECNN and Undershooting: Next, we combine the ECNN with undershooting:
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Figure 5. Combining Error Correction Neural Networks and Undershooting.

As depicted in Fig. 5, undershooting is integrated into the ECNN by a redesign of the
autonomous part. Assuming a uniform time structure, the underlying system dynamics
of the ECNN is divided into autonomous sub-dynamics. The output of the network is
computed by gathering the information of the intermediate states.

Empirical Study: We constructtwo ECNNs on the basis of specific economic
data (e. g. international stock, bond and commodity indices) to forecast the quarterly
and semi-annual development of the BPD / USD FX-rate. Working with monthly data,
the in-sample period covers the time from Feb. 1991 to Dec. 1997, while the out-of-
sample period ranges from Jan. 1998 to Apr. 2001. The preprocessing of the data is
done by calculating the scaled momentum of each input [3].
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The first ECNN is similar to Fig. 4, while the other ECNN corresponds to Fig. 5.
Here, we model the monthly development of the FX-rate bytwo intermediate time
steps. Except the undershooting, both ECNNs are equal. The FX-rate shifts are pre-
dicted by overshooting branches of the ECNNs, which provide a sequence of forecasts
t� �, � � �, t� 
. The ECNNs are trained until convergence byvario-eta learning [3].

On the basis of profit & loss curves, the performance of both ECNNs is evaluated
by a comparison with a naive strategy, which assumes market trends (see Fig. 6).
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Figure 6. Out-of-sample comparison of profit & loss curves trading the BPD / USD FX-rate. Profit & loss
curves resulting form (i.) quarterly forecasts, left, and (ii.) semi-annual forecasts, right.

Concerning both forecast horizons, the ECNN combined with undershooting is
not only able to outperform the benchmark but is also superior to the standard ECNN.
This indicates, that undershooting provides the ECNN with additional prior knowl-
edge about the dynamics, which enables us to improve the model performance. Note,
that the standard ECNN is also superior to the naive strategy.

4 Conclusion
We introduced an important prestructuring element for the modeling of dynamical
systems. Undershooting allows to model the relationship between the model and the
data time grid, such that it is possible, to use a finer model time grid than that of the
observed data. Interestingly, also a statistical improvement is provided: The network
output is computed as an average which may reduce the noise.

Combining undershooting and ECNN, we are not only able to handle noise, miss-
ing external influences and external shocks but also gain a deeper understanding of
the dynamics. Future work will consider several extensions of the ECNN architec-
ture, since we believe, that ECNN is a promising framework for financial forecasting.

References
[1] Haykin S.:Neural Networks. A Comprehensive Foundation. Macmillan College

Publishing, New York, 1994. Second edition, 1998.

[2] Kuczma M., Choczewski B., Ger R.:Iterative Functional Equations, Cambridge
University Press, 1990.

[3] Zimmermann H. G., Neuneier R. and Grothmann R.:Modeling of Dynamical
Systems by Error Correction Neural Networks, in: Modeling and Forecasting
Financial Data. Eds. Soofi, A. and Cao, L., Kluwer, March 2002.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 395-400




