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Abstract. Error correction neural networks (ECNN) are an appropri-
ate framework for the modeling of dynamical systems in the presents of
noise or missing external influences. Combining ECNNs with the con-
cept of variants-invariants separation in form of a bottleneck coordinate
transformation, we are able to handle high-dimensional problems.
Further on, we propose a new learning rule for the training of neural
networks, which evaluates only specific gradients for the adaptation of
the network weights. By this, we are able to generate time invariant
localized structures and thus, support the optimization of the network.
Forecasting the German yield curve, an ECNN including the separation
of variants-invariants is superior to traditional neural networks.

1 Introduction

Most dynamical systems are partly driven by an autonomous development and
partly by external influences. Recurrent networks enable us to model such
open systems in a direct way [5]. Unfortunately, due to e. g. missing external
influences or noise, our knowledge about the dynamics is often limited. On
this problem, we introduce error correction neural networks (ECNN), which
use the last model error as an auxiliary input. Now, the learning can interpret
the model misfit as an external shock which guides the dynamics afterwards.
Another problem is the handling of high dimensional systems. The com-
plexity of such systems can be reduced, if it is possible to separate the dynamics
into time variant and invariant structures. Clearly, only the variants have to
be predicted, while the invariants remain constant. Such a dimensionality re-
duction in form of a bottleneck network can be combined with ECNNs.
Besides, learning from data is also a major issue of the model building.
Here, we are interested in finding time invariant structures out of varying time
series. We develop a new learning rule which evaluates only specific gradients
during the training, such that localized structures are generated in the network.
The outline of the paper is a follows: First, we introduce the concept of
ECNN. Second, we combine the separation of variants-invariants with ECNN in
order to handle high dimensional systems. Third, we introduce a new learning
rule, which enables us to enforce the construction of localized structures in the
network. Finally, we apply our techniques to forecast the German yield curve.
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2 Error Correction Neural Networks (ECNN)

Most dynamical systems are partly internally and partly externally driven [5].
For discrete time grids, such an open system can be modeled by a
state transition s;1 =  f(se,us,ye —yd) and an (1)
output equation y; = g(s¢) -

The state transition sy is a mapping from the previous state s;, external in-
fluences u; and a comparison between the model output y; and the observation
yl. If the model error (y; — y{) is zero, we have a perfect description of the
dynamics. However, due unknown influences u; or noise, our knowledge about
the dynamics is often limited. Being so, the model error (y; — y{) at time #
quantifies the model misfit. The output equation computes the model output.

Using weight matrices A, B, C, D of appropriate dimensions corresponding
to s, u, and (y, —y?), a neural network model of the open system in Eq. 1 is

sgp1 = tanh(As; + Bug + D tanh(Csy — yf)) @)
ye = Cst
R d\ 2 .
72 (we—uf) — min (3)
t=1 B

In Eq. 2, the output y; is recomputed by C's; and compared with the observation
yl. Different dimensions in s, are adjusted by D. The system identification
task of Eq. 3 is solved by finite unfolding in time using shared weights [1].
Fig. 1 depicts the resulting spatial neural network architecture [5].

Figure 1: ECNN incorporating overshooting [5]. Note, that —Id is the fixed
negative of an identity matrix, while z;_, are output clusters with target values
of zero in order to optimize the error correction mechanism.

The ECNN is understood best by analyzing the dependencies of s;11 and
st, up as well as z; = C's; — y!. The ECNN has two different inputs: (i.) the
externals us, which directly influence the state transition, and (ii.) the targets
yl. Only the difference between y; and y{ has an impact on s;1 [5]. At future
time t + 7, there is no compensation of the internal expectations y;;, and thus
the system offers forecasts y:+, = Csiy-. An ECNN forecast is based on an
autonomous dynamics, external influences and the error correction part [5].

The autonomous part of the ECNN is extended into the future by overshoot-
ing [5], i. e. we iterate matrices A and C in future direction (Fig. 1). Over-
shooting regularizes the learning and thus may improve the model performance.
Of course we have to supply the additional output clusters y¢41,- .., Ytrn With
target values. Because of shared weights, no additional parameters are used.
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3 ECNN & Variants-Invariants Separation

Modeling high dimensional dynamical systems [5], we integrate the concept of
variants-invariants separation into the ECNN of Fig. 1. This dimension reduc-
tion is realized by a bottleneck neural network (Fig. 2, left). The compressor F’
removes time invariant structures from dynamics, i. e. we single out time vari-
ant structures of the dynamics. The reconstruction of the complete dynamics
(decompression) is done by matrix E. As depicted in Fig. 2, the bottleneck
network seems to be disconnected from the ECNN. However, this isn’t true:
the two sub-systems are implicitly connected via shared matrices E and F' [5].
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Figure 2: Combining Variants - Invariants Separation and ECNN

Using variants-invariants separation, the ECNN has to predict a low di-
mensional vector z, instead of the high dimensional vector y,. Note, that the
negative inputs —y? are required by the ECNN in order to generate the trans-
formed targets —z? in each z, cluster. By this, we can compensate the internal
forecasts z, = C's,_; with the transformed targets —z¢ = F(—y?).

4 Exploring Invariant Structures in Time

Training neural networks, we are interested in identifying time invariant struc-
tures in varying time series. Standard learning algorithms like error backprop-
agation [4] in combination with a particular learning rule generate a hypothesis
of such time invariant structures. Fitting our model y;11 = f(z,w) to the ob-
served data x, forecasting is only feasible, if we assume the time invariance of
the explored structures (so-called invariance hypothesis) [3].

Unfortunately, a pure fitting of the data often leads to inadequate results,
because the underlying dynamics may drift over time. As a remedy, the struc-
tures which are created during the learning have to be revised. Only if we
cannot falsify the invariance hypothesis, the forecasts of our model are reliable.

Instability pruning: Having trained the neural network until conver-
gence, we suggest to use instability pruning in order to test the invariance
hypothesis. Instability pruning uses an important property of the minimal
training error: If the learning has reached a minimum, the cumulative gradient
g of every weight is approximately zero on the training set t =1,...,T":

T

1 & 1
ngzgt:ZTgtNO. (4)
t

t

If this criteria is still valid, in case we apply a time varying weighting to the gra-
dients, the invariance hypothesis is true and our model is stable. The weighting
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is done by emphasizing the near to present time gradients on the training set:

T T
Z aigr =0 with Z o =1 (5)
t t

We define a weighted average, which favors the most recent gradients on the
training set by using a weighting factor a; = at. We choose oy = 2t/(T'(T+1)).

Having trained the neural network until convergence, the test value of insta-
bility pruning is now computed for a single weight w by comparing the weighted
and unweighted criteria of the gradients:

T
e+ |+ 27 2l
T
€+ ‘% Et gt‘
If we have a stationary distribution of the gradients g;, the weighted cumu-
lative gradient is similar to the cumulative gradient (see Fig. 3, left). Thus, the
test value of Eq. 6 is close to 1. Drifting structures over time cause instable

gradient distributions (see Fig. 3, right). Thus, the test value is larger than 1.
Gt Gt

(6)

test, =

Figure 3: The gradients of
valuable weights have a sta-
tionary distribution (left).
pattern patten 3 . .
Gradients of instable weights
have a non-stationary distri-

bution (right).

stable unstable

Instability pruning does not require a validation set for the calculations of
the test values. In principle, the test values can also be smaller than 1. In
this case, the system is even more stable in recent time and thus, the asso-
ciated weights should not be pruned. We suggest to train the network until
convergence and compute the test values. Then, we take out the most unstable
weights and restart the learning. We iterate this scheme until the error on a
certain validation set increases. The constant € prevents numerical difficulties.

Partial Learning is a new learning rule, which improves of generation of
invariant structures in the sense of sparse network architectures: A drawback
of using standard learning rules together with error backpropagation [4] is that
a distributed representation of the input to output relationship is generated,
i. e. all parts of the network contain some relevant information. Each weight
of the network is partly responsible for the explanation of the network error.

Unfortunately, due to the distributed structures, the falsification of the gen-
erated invariance hypothesis by pruning methods is complicated. In addition,
structural redundancies in different parts of the network make the task of find-
ing structural instabilities even more difficult [3].

As a remedy, we propose to support the learning of localized structures.
We achieve the generation of localized structures by using only the p% largest
gradients of each connector for the modification of the network weights. With
n as the learning rate, the partial learning rule can be written as
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W =w+nf(p,9)g9: , with (7)

f(p,g)Z{

According to Eq. 8, a weight w is updated to a new value w, if its associated
gradient g; is one of the p% largest gradients of the concerned connector. Here,
we neglect the implication of error backpropagation, that the gradients which
are created for a specific training pattern are able to evaluate all weights of the
network. Partial learning focuses only on weights being in charge for a specific
training pattern. As a result, the learning of single training patterns changes
only parts of the network and thus, localized structures are preferred.

We choose only the p% largest gradients (Eq. 8), because these gradients
often contain the most relevant structural information and are likely to gen-
erate highly non-linear structures. This is especially true in the beginning of
the training. Large error signals indicate important mismatches of the model,
which have to be handled. On the other hand, large gradients are often caused
by outliers in the data set. On this problem, we propose to use a network
internal preprocessing together with a robust error function [3].

Our experiments indicate, that choosing even the 90% smallest gradients
for the learning leads to an inefficient learning and to a poor fit on the training
set, while choosing only 10% of the largest gradients allows efficient learning
and a perfect fit of the training data. We found that partial learning should
not be applied to output and bias connections of the neural network.

1 for the p% largest gradients |g;| in each connector (8)
0 otherwise

5 Forecasting the German Yield Curve

We employed an ECNN combined with the separation of variants-invariants
(Fig. 2) to forecast the complete German yield curve (REX1 - REX10). We are
working on the basis of monthly data to forecast the 3 and 6 month changes
of the German yield curve. The training set is from Jan. 91 to Aug. 95, while
the test set is from Oct. 95 to Dec. 97. The data base consists of stock,
bond and foreign exchange market indices of Germany, USA and Japan. The
preprocessing is done by computing the scaled momentum of each input [3].

The unfolding in time of the ECNN includes six past and an overshooting
branch of six future time steps (Fig. 2). The overshooting branch provides
us with the 3 and 6 month yield curve forecasts. We found that only 3 vari-
ants are important for the German yield curve. The ECNN was trained until
convergence with partial learning using only 10% of the largest gradients.

The performance of the ECNN is evaluated by a comparison with two bench-
marks: The first one refers to a time-delay recurrent neural network (RNN).
In contrast to the ECNN the RNN does not include an error correction mech-
anism. The second one is a 3-layer feedforward network (MLP). We optimized
the MLP by EBD-pruning [3]. The benchmarking is based on the return of
investment (ROI) of each model. The ROI refers to a simple trading strategy
using the yield curve forecasts, e. g. we sell bonds if we expect rising interest
rates (Fig. 4). We included transaction costs of 1% per trade. Further more,
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we computed the risk associated with each trading strategy. As a measure of
risk, we consider the forecasting uncertainty of each model.
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Figure 4: Return of investment of the ECNN and the benchmarks (test set).

As depicted in Fig. 4, the ECNN including variants-invariants separation
outperforms both benchmarks. Due to the variants-invariants separation, the
ECNN reaches a steady forecasting quality over the complete yield curve,
i. e. there is no drawback in forecasting long-term instead of short-term ma-
turities. Among the benchmarks, the RNN outperforms the MLP. Concerning
the risk, we found that the ECNN has the lowest risk level (¢ = 0.0381).
Among the benchmarks, the RNN (0 = 0.0440) has a lower risk than the
MLP (o = 0.0731). These results indicate that the additional structures of the
ECNN (e. g. variants-invariants separation) improve the forecasting.

6 Conclusion

An ECNN is able to handle external shocks without changing the identified
dynamics of the underlying system. The ECNN can be extended by a variants-
invariants separation, which allows the modeling of high dimensional, noisy
dynamical systems. The training of the ECNN is supported by partial learning,
which creates localized time invariant structures.

As indicated by our empirical study, the usage of prior knowledge in form of
the proposed architectural enhancements of the network architecture enables
us to outperform traditional neural networks. Future work will consider several
extensions of the ECNN, e. g. unfolding in space and time [5]. We believe, that
the ECNN is a promising framework for financial forecasting.
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