
Generalization by structural properties from
sparse nested symbolic data

Mikael Bod́en (mikael.boden@ide.hh.se)
Halmstad University, Sweden.

Abstract. A set of simulations demonstrate that recurrent networks can exhibit
generalization by abstraction from extremely sparse but structurally homogenous
symbolic data. By cascading two recurrent networks – feeding the second network
with discretized hidden states of the first – it is also possible to generalize according
to complex structure. By automatic discretization the cascaded architecture assists
in scaling up sequential learning tasks and offers explanations to the apparent sys-
tematicity and generativity of language use.

1 Introduction

Inducing means in recurrent networks for processing structurally complex languages
(e.g. context-free and context-sensitive) is possible but in many cases difficult [9, 1, 4].
Available demonstrations are limited in at least two senses.

1. Only a few terminal symbols are employed. It is unclear if large-scale languages
can be used for induction.

2. The dynamics, which indicates that the network is actually going beyond regu-
lar language processing, is associated with individual terminals rather than word
classes. It is unclear if the network will extrapolate, i.e. utilize the same prin-
ciples for processing other related symbols possibly appearing at new levels of
structural embedding.

Single-step prediction learning is a learning strategy that has proven particularly
useful for organizing continuous internal state spaces according to contextual and
functional similarities of untagged language data. Given a sequence of words pre-
sented to the network, the network essentially learns to output the probabilities of
words occurring next but in a manner quite distinct from conventionaln-gram mod-
elling: by concurrently developing abstractions in state space.

The automatic availability of such grammatical and semantical abstractions, em-
bodied as activation clusters, led us to investigate how such abstractions could improve
learning the dynamics previously only detected for individual words. In partial sup-
port, results in machine learning show that performance when classifying continuous
features can be improved by discretization prior to induction [2].

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382
ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

2 A case for structure and abstraction

A learner faces examples presented sequentially and in random order from the simple
context-free languageanbn where1 ≤ n ≤ 3: aabbabaaabbbaabba.... If we collect
statistics for combinations of the six previous letters (a 6-gram), the prediction task
can be carried out to perfection. There would be 25 examples in such a table so to
estimate the probabilities used for generating the strings would not take long.

A tabular approach like the 6-gram would not be inclined to process strings gen-
erated byanbn where1 ≤ n ≤ 4. With a window of 6 symbols,aaaabbb would be
matched withaaabbb → a. Even ifn was allowed to take any valuex while collecting
statistics, and sufficient storage for storing2x letter entries is assumed, the statistical
learner would not generalize to processax+1bx+1, or anyn beyondx. Natural lan-
guage contains many examples where embedding occurs. The inability to extrapolate
beyond data led some to argue that a mechanism based on structure sensitivity (and
recursion) is required [5].

Natural language also make use of a large number of components and, thus, a
learner must abstract. We extendanbn by having twoas, and twobs (a grammar
which we refer to as a diversified center embedded language, DCEL). The statisti-
cally drivenn-gram learner now needs to store25 · 26 = 1600 entries in its table.
More data is required to approximate the probabilities. If there are three variants of
eacha andb in DCEL 18225 entries are required. If 25 variants of eacha andb is
used, 6,103,515,625 entries are needed1 and massive data sets are required. Hidden
Markov Models (HMMs) can improve on tabular representation. By attaching transi-
tion probabilities to states (either observed or hidden) the amount of memory required
to represent the statistics is significantly reduced (assuming the right abstractions are
found). The catch is that HMMs are still finite and are consequently not able to go
generalize beyond the level of embedding available in the training data.

Recurrent networks have been successful at learning small language fragments.
As exemplified above there are two aspects to generalization of interest.

1. Abstraction. Through learning, networks group inputs in state space which are
used similarly, and are thus able to generalize to other words within groups.

2. Dynamics for processing embedded structure. From a learning perspective there
is a trade-off between available resources and the generality of mechanism. If
state space is large and training set is small the network basically stores specific
information about each sample, e.g. in a tabular fashion. Otherwise, the network
is forced to seek other (more general) ways of representing the mechanism. A
general mechanism may extrapolate beyond the limits of the training set. In Long
Short Term Memory (LSTM) networks and some Simple Recurrent Networks
(SRNs; [3]), simple linear counters are induced [4] foranbn. In some SRNs and
Sequential Cascaded Networks (SCNs; [8]) oscillating or spiralling dynamics is
induced [1].

As pointed out by Hadley [5] and Marcus [6], generalization in humans sometimes
goes beyond the regularities inferred with recurrent networks. As an example, if you

1“Don’t care” markers can reduce this number.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

have heard “Smith fleedled Jones” you would infer that it is grammatical to say “Smith
fleedled Belanger” (even though you have never seen ”Belanger” as the object in that
context) [6]. In error based learning the likelihood that Belanger would be predicted
(in that position) by the network is decreased every time another word occurs instead.
If Belanger never occurs (in that particular training context), the probability eventually
goes down to zero [6].

As soon as there are other relations in which Belanger plays similar roles as Jones
(and Smith) it is quite likely that the network forms a “cluster” for these words. Some
of the cluster members are closer than others – analogous to “typicality” in catego-
rization.

3 Simulations

The idea this paper presents is simple: the “clusters” found at a hidden layer of a recur-
rent network can be segmented and discretized using a self-organizing map (or other
unsupervised classifier) and be used as inputs and targets of another recurrent net-
work, similarly trained to predict the next input (cf. [7] who used a cascaded setup to
abstract from low level events in a robotic environment, and [10] who trained, on a va-
riety of domains, an extra network to produce class representations (out of target data)
which the main network is able to predict). Effectively, through continuous training,
the second network approximates a coarser probability distribution over a different set
of discrete variables (e.g. noun, verb, etc) at an abstraction level determined by the
width of the segmentation network.

The abstracted variables can be mapped back to its members without taking into
account the context by a simple association.2 At the expense of specificity, a higher
degree of generality is supported by the network.

The primary network is here an SRN consisting of two hidden layers of which
only the second is recurrent. The recurrent layer feeds back to itself in a fully con-
nected manner. The prediction task encourages the primary network to form context-
independent representations at the first hidden layer which are then put into context at
the second layer. The first hidden layer is used for segmentation since each input will,
when weights are fixed, result in the same pattern independent of which context in
which the input appears. The second network is also an SRN. Both SRNs are trained
using backpropagation through time.

Specific network architectures were designed to address the question if the second
recurrent network (through its own learning task and its own independent dynamics)
supplies additional information to support a wider range of generalizations – includ-
ing abstraction and dynamics for structural extrapolation. For benchmarking, conven-
tional SRNs with various number of hidden layers and various number of hidden units
were studied. Second, cascaded SRNs were evaluated. All networks were trained to
predict the next word in strings presented sequentially with no specific end-of-string
marker. In a center embedded language, the second half of each string is partly deter-
mined by the first half. Performance can thus be measured by the networks’ ability to

2Mapping abstractions back to specific members is not investigated here since we are dealing with a
homogeneous data set. Simulation with a heterogeneous language data set which utilizes this feedback is
currently underway.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

Mean errors (SD)
Network Train Test Test n=11 or 12
50/3R/50 0.50 (0.06) 0.55 (0.06) 0.84 (0.31)
50/2/2R/50 0.37 (0.01) 0.38 (0.01) 1.02 (0.17)
50/10R/50 0.86 (0.09) 0.92 (0.11) 1.67 (0.37)
50/10/10R/50 0.77 (0.06) 0.83 (0.06) 1.74 (0.51)
50/2R/50 0.40 (0.04) 0.45 (0.03) 0.95 (0.28)

Table 1: The RMS errors for 5 runs of each configuration (standard deviations shown
within parentheses. The networks are described using the number of units in each
layer (input to output). R indicates that the layer is recurrent.

predict the next symbol (or group of symbols) at any time after the first half plus one
symbol of the string has been presented.

A set of 300 strings from 25-DCEL with1 ≤ n ≤ 10 (which encompasses a total
of 9.1 · 1027 possible strings) were used for training and another 300 strings (non-
overlapping but generated by the same grammar) were used for testing.3 In addition,
test strings which go beyond level 10 were used for assessing the networks ability to
generalize in terms of structural properties. Each symbol in each string is represented
as a one-hot code, i.e. mutually orthogonal bit vectors.

Each network was trained for 100 rounds through the training set (300 strings) and
updated after each completed string. Various learning rates were tested but significant
differences were not observed. In a conventional SRN we used 0.05 for the results
presented below. In the cascaded architecture we used 0.3. BPTT unfolded for 10
timesteps.

It turns out that when training the SRN on 25-DCEL the SRN abstracts thea-
components and theb-components but is incapable of correctly predicting string end-
ings even within the training set. The test errors were at the level of the training error
(see Table 1). Hence, the network does not focus on specific strings or symbols. In-
stead, generalization is based on groups of symbols as discovered through training
(verified by cluster analysis on hidden activation). This basis for generalization is not
sufficient to address new levels of embedding. In Table 1 the errors on a test set which
exclusively contains strings withn ∈ 11, 12 are shown. The errors are radically higher
than the training- and test sets with shorter strings in each case. Hence, the network is
not able to extrapolate to levels beyond 10.

The cascaded recurrent network was studied in the following way. A conventional
50/2/2R/50 SRN was trained on the 300 strings. At each presentation the first hidden
layer (preceeding the recurrent layer) was fed into a self-organizing map (SOM) which
had 2 outputs. The SOM produces a bit string0, 1 or 1, 0 depending on the hidden
activity. In all 10 networks the SOM produced (about half-way through training) one
output fora1, a2, ..., a25 and another forb1, b2, ..., b25. Simultaneously, a secondary
2/2R/2 SRN was trained on the outputs of the SOM to predict the next word.4 It

3The distribution of the training and test set was skewed so that shorter strings were more frequent.
4Since the primary SRN produces the target output of the secondary SRN a delay is imposed on the

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

should be emphasized that the secondary SRN is trained to produce outputs on basis
of inputs, both at a different granularity than in the original data set. This reduction in
resolution turns out to have a marked effect on the ability to process deeper levels of
embedding.

Of the 10 cascaded networks, 7 managed to process strings to level 10 and beyond.
The best managed to correctly predict strings withn ∈ 1, ..., 27. On average the cas-
caded network managed to process strings up ton = 15.3. Qualitatively, the dynamics
shows that the networks extrapolate. The two abstractions (theas and thebs) can be
thought of as two autonomous dynamical systems (the input is fixed). For all of the
networks that extrapolate, the first system oscillates towards an attractive point in a
fractal fashion. When the second system starts (when the firstb input is presented)
the activation starts to diverge (by oscillation) from a repelling fixed point located in
a separate part of the state space. The offset from the first fixed point determines the
starting point for the second phase and indirectly determines how many oscillations
that are required to reach the decision hyperplane which signals that the next input will
be ana. The behavior of the systems can also be described by linearizing each dy-
namical system at the fixed points and calculating the corresponding eigenvalues and
eigenvectors. It turns out that all 7 successful networks share the following properties.

• The largest absolute eigenvalues of the two systems are inversely proportional to
one another. In practice one of them is usually around -0.7, the other around -1.4.
The inverse proportionality ensures that the rate of contraction around the fixed
point of thea system matches the rate of expansion around the fixed point of the
b system ([9], p. 23).

• The fixed point of thea system lies on the axis given by the eigenvector cor-
responding to the smallest absolute eigenvalue of theb system (the direction in
which the fixed point attracts) when projected through the second fixed point ([9],
p. 23). This configuration basically entails that the first thing that happens in the
b system is a long-distance state shift along its eigenvector to a part in state space
close to theb fixed point. The positioning of the eigenvector ensures that the fi-
nal state of thea system (which identifies thea-count) correctly sets the starting
point for the expansion phase.

The output of the secondary SRN can be mapped back to the set of members.
However, this mapping cannot be based on dependencies between individual mem-
bers. Instead, if a property holds for a subset of members of the same group, that
property holds for all of the members. Circularly, groups are only formed with those
that actually share a substantial proportion of properties. In principle, the segmenta-
tion (implemented by the SOM) can happen at many levels. Consequently, general-
ization can be geared at different levels of abstraction.

4 Conclusion

In language processing there are at least two essential aspects to generalization: ab-
straction and structural extrapolation. Previous work has focused on one or the other.

training of the secondary SRN.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

We have shown that recurrent networks are well-suited to abstract symbols according
to their similarities in a structurally homogeneous prediction task. However, the same
networks are unable to reach the same level of performance on structural extrapola-
tion as networks trained directly on abstract data. By feeding discretized state patterns
to a second recurrent network we are able to associate the same dynamics previously
observed only in small-scale experiments to a structurally similar but much larger data
set.

Apart from scaling up to larger domains, the simulations indicate a potential resort
for addressing the apparent systematicity of language in a completely unsupervised
fashion. Hadley’s “strong systematicity” requires that a token should be appropriately
processed in novel syntactic positions, at any level of embedding [5]. Admittedly, the
structure of the tested domain is homogeneous and has only a fraction of the complex-
ity of natural language. However, the level of generalization that is achieved fulfills
the requirements of strong systematicity.

References

[1] M. Bodén and J. Wiles. Context-free and context-sensitive dynamics in recurrent
neural networks.Connection Sci, 12(3):197–210, 2000.

[2] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-
cretization of continuous features. In A. Prieditis and S. Russell, editors,Ma-
chine Learning: Proc Twelfth International Conference, pages 194–202, San
Francisco, CA, 1995. Morgan Kaufmann.

[3] J. L. Elman. Finding structure in time.Cognitive Sci, 14:179–211, 1990.

[4] F. A. Gers and J. Schmidhüber. LSTM recurrent networks learn simple context
free and context sensitive languages.IEEE Trans Neural Networks, 2001, 12(6).

[5] R. F. Hadley. Systematicity in connectionist language learning.Mind and Lan-
guage, 9(3):247–272, 1994.

[6] G. F. Marcus. Language acquisition in the absence of explicit negative evidence:
can simple recurrent networks obviate the need for domain-specific learning de-
vices?Cognition, 73:293–296, 1999.

[7] S. Nolfi and J. Tani. Extracting regularities in space and time through a cascade
of prediction networks: The case of a mobile robot navigating in a structured
environment.Connection Sci, 11(2):125–148, 1999.

[8] J. B. Pollack. The induction of dynamical recognizers.Machine Learning, 7:227,
1991.

[9] P. Rodriguez, J. Wiles, and J. L. Elman. A recurrent neural network that learns
to count.Connection Sci, 11(1):5–40, 1999.

[10] J. Schmidhuber and D. Prelinger. Discovering predictable classifications.Neural
Comp, 5(4):625–635, 1993.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 377-382

