ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

DEKF-LSTM

Felix A. Gers, gers@mantik.de,
Neue Gruenstrasse 18, 10179 Berlin, Germany, www.mantik.de

Juan Antonio Pérez-Ortiz, japerez@dlsi.ua.es,
DLSI, Universitat d’Alacant, Spain, www.dlsi.ua.es

Douglas Eck doug@idsia.ch, Jirgen Schmidhuber juergen@idsia.ch,
IDSIA, Galleria 2, 6928 Manno, Switzerland, www.idsia.ch

Abstract.

Unlike traditional recurrent neural networks, the long short-term memory
(LSTM) model generalizes well when presented with training sequences
derived from regular and also simple nonregular languages. Our novel
combination of LSTM and the decoupled extended Kalman filter, how-
ever, learns even faster and generalizes even better, requiring only the 10
shortest exemplars (n < 10) of the context sensitive language a™b"c" to
deal correctly with values of n up to 1000 and more. Even when we con-
sider the relatively high update complexity per timestep, in many cases
the hybrid offers faster learning than LSTM by itself.

1 Introduction

Sentences of regular languages are recognizable by finite state automata having
obvious recurrent neural network (RNN) implementations. Most recent work
on language learning with RNNs has focused on them. Only few authors have
tried to teach RNNs to extract the rules of simple context free and context
sensitive languages (CFLs and CSLs) whose recognition requires the functional
equivalent of a potentially unlimited stack [11, 12, 1]. Some previous RNNs
even failed to learn small CFL training sets [10]. Those that did not and those
that even learned small CSL training sets [9, 1] failed to extract the general
rules and did not generalize well on substantially larger test sets.

The recent “Long Short-Term Memory” (LSTM) method [6] is the first
network that does not suffer from such generalization problems. It clearly out-
performs traditional RNNs on all previous CFL and CSL benchmarks that we
found in the literature. Stacks of potentially unlimited size are automatically
and naturally implemented by linear units, the “Constant Error Carousels”
(CECs) of standard LSTM, originally designed to overcome error decay prob-
lems plaguing previous RNNs [6]. Each linear CEC is surrounded by a few

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

nonlinear units responsible for learning the nonlinear aspects of sequence pro-
cessing.

In this article we focus on improving LSTM convergence time by using a
decoupled extended Kalman filter [8] to optimize learning rate. We consider two
supervised learning algorithms: the original LSTM algorithm (discussed in next
section), and a new one that combines the decoupled extended Kalman filter
approach (DEKF-LSTM, described in Section 3). We apply both algorithms
to the only CSL ever tried with RNNs, namely, a™b"c™. Section 4 presents
experiments; the results are discussed in Section 5.

2 LSTM overview

Unfortunately, lack of space prohibits a complete and self-contained descrip-
tion of LSTM. We refer the reader to [3, 4] for details. In what follows, we
will limit ourselves to a brief overview. The basic unit of an LSTM network
is the memory block containing one or more memory cells and three adaptive,
multiplicative gating units shared by all cells in the block. Each memory cell
has at its core a recurrently self-connected linear unit called the “Constant
Error Carousel” (CEC) whose activation is called the cell state. The CECs
enforce constant error flow and overcome a fundamental problem plaguing pre-
vious RNNs: they prevent error signals from decaying quickly as they “back
in time”. The adaptive gates control input and output to the cells (input and
output gate) and learn to reset the cell’s state once its contents are out of date
(forget gate). Peephole connections [3] connect the CEC to the gates. All errors
are cut off once they leak out of a memory cell or gate, although they do serve
to change the incoming weights. The effect is that the CECs are the only part
of the system through which errors can flow back forever, while the rest of the
units learn the nonlinear aspects of sequence processing. This makes LSTM’s
updates efficient without significantly affecting learning power: LSTM’s learn-
ing algorithm is local in space and time; its computational complexity per time
step and weight is O(1). The CECs permit LSTM to bridge huge time lags
(1000 discrete time steps and more) between relevant events, while traditional
RNNs already fail to learn in the presence of 10 step time lags, despite requir-
ing more complex update algorithms such as “Real-Time Recurrent Learning”
(RTRL), or “Back Propagation Through Time” (BPTT).

Forward pass. See [3] for a detailed description of LSTM’s forward pass
with forget gates and peephole connections. Essentially, the cell output y¢ is
calculated based on the current cell state s. and four sources of input: to the
cell itself, to the input gate, to the forget gate and input to output gate. All
gates have a sigmoid squashing function with range (0, 1). The state of memory
cell s.(t) is calculated by adding the squashed gated input to the state at the
previous time step s.(t—1), which is multiplied by the forget gate activation.
The cell output y° is calculated by multiplying (gating) s.(¢) by the output
gate activation.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

Gradient-based backward pass. Essentially, LSTM’s backward pass (for
details see [6, 4]) is an efficient fusion of slightly modified, truncated BPTT and
a customized version of RTRL. We are using iterative gradient descent, mini-
mizing an objective function E(t), here the usual mean squared error function.
Unlike BPTT and RTRL, LSTM’s learning algorithm is local in space and time:
the update complexity per time step and weight is O(1). Still, LSTM learns
many tasks unlearnable by BPTT and RTRL [6, 3, 4].

3 DEKF-LSTM overview

Due to lack of space, we provide only an overview of how DEKF is combined
with LSTM. For an in-depth treatment of Kalman filters, see [8, 5]. Gradient
descent algorithms, such as the original LSTM training algorithm, are usually
slow when applied to time series because they depend on instantaneous estima-
tions of the gradient: the derivatives of the objective function E(t) only take
into account the distance between the current output and the corresponding
target, using no history information for weight updating. DEKF-LSTM over-
comes this limitation. It considers training as an optimal filtering problem,
recursively and efficiently computing a solution to the least-squares problem:
finding the curve of best fit for a given set of data in terms of minimizing the
average distance between data and curve. At any given time step, all the infor-
mation supplied to the network up until now is used, including all derivatives
computed since the first iteration of the learning process. However, compu-
tation is done such that only the results from the previous step need to be
stored.

The Kalman filter requires, among other things, the computation of the
derivatives of the objective function E(¢). In our implementation these are
calculated in the same way as in the original LSTM backward pass. In addition,
at every discrete time step of each training sequence, several matrix operations
are performed by DEKF-LSTM, including the inversion of a square matrix of
size equal to the number of output neurons. Therefore, while LSTM is local in
time and space, DEKF-LSTM is not.

4 Experiments

The network sequentially observes exemplary symbol strings of a given language
(in this case the CSL a™b"™c™), presented one input symbol at a time. Following
the traditional approach in the RNN literature we formulate the task as a
prediction task. At any given time step the target is to predict the next symbol,
including the “end of string” symbol 7". When more than one symbol can occur
in the next step, all possible symbols have to be predicted, and none of the
others. Every input sequence begins with the start symbol S. The empty
string, consisting of ST only, is considered part of each language. A string is
accepted when all predictions have been correct. Otherwise it is rejected.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

This prediction task is equivalent to a classification task with the two classes
“accept” and “reject”, because the system will make prediction errors for all
strings outside the language. A system has learned a given language up to
string size n once it is able to correctly predict all strings with size < n.

Symbols are encoded locally in d-dimensional vectors, where d is equal to
the number of symbols of the given language plus one for either the start symbol
in the input or the “end of string” symbol in the output (d input units, d output
units, each standing for one of the symbols). +1 signifies that a symbol is set
and —1 that it is not set; the decision boundary for the network output is 0.0.

4.1 Network topology and parameters

The input units are fully connected to a hidden layer consisting of memory
blocks with 1 cell each. The cell outputs are fully connected to the cell inputs, to
all gates, and to the output units, which also have direct “shortcut” connections
from the input units. All gates, the cell itself and the output unit are biased.
The bias weights to input gate, forget gate and output gate are initialized with
—1.0, +2.0 and —2.0, respectively (these are standard values, which we use for
all our experiments; precise initialization is not critical here). All other weights
are initialized randomly in the range [—0.1,0.1]. The cell’s input squashing
function g is the identity function. The squashing function of the output units
is a sigmoid function with the range (-2, 2).

We use a network with 4 input and output units, and two memory blocks
(with one cell each), resulting 84 adjustable weights (72 unit-to-unit and 12
bias connections).

4.2 Training and testing

Training and testing alternate: after 1000 training sequences we freeze the
weights and run a test. Training and test sets incorporate all legal strings up
to a given length: 3n for a™b™c™. Only positive exemplars are presented. Train-
ing is stopped once all training sequences have been accepted. All results are
averages over 10 independently trained networks with different weight initial-
izations (the same for each experiment). The generalization set is the largest
accepted test set.

We study LSTM’s behavior in response to two kinds of training sets: a)
with ne€ {1,.., N} (we focus on N = 10) and b) with n€ {N — 1, N} (we focus
on N = 21). For large values of N, case (b) is much harder because there
is no support from short (and easier to learn) strings. We test all sets with
ne{L,., M}, Le{l,..,N —1}.

LSTM weight updating. Weight changes are made after each sequence.
We apply either a constant learning rate or the momentum algorithm [7] with
momentum parameter 0.99. At most 107 training sequences are presented; we
test with M € {N,..,500} (sequences of length < 1500).

DEKF-LSTM weight updating. The online nature of the DEKF-LSTM
algorithm forces weights to be updated after each symbol presentation. The pa-

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

rameters of the algorithm are set as follows (see [5] for details): the covariance
matrix of the measurement noise is annealed from 100 to 1; the covariance ma-
trix of artificial process noise is set to 0.005 (unless specified otherwise). These
values gave good results in preliminary experiments, but they are not critical
and there is a big range of values which result in similar learning performance.
The influence of the remaining parameter, the initial error covariance matrix,
will be studied in Section 5.2. The maximum of training sequences presented
is 10%; we test with M € {N,..,10000} (sequences of length < 30000).

5 Results

Previous results: Chalup and Blair [2] reported that a simple recurrent
network trained with a hill-climbing algorithm can learn the training set for
n < 12, but they did not give generalization results. Boden and Wiles [1]
trained a sequential cascaded network with BPTT; for a training set with
n€e{l,..,10}, the best networks generalized to n € {1,..,12} in 8% of the trials.

5.1 LSTM with constant learning rate or momentum

When utilizing the original training algorithm, LSTM learns both training
sets and generalizes well. With a training set with n € {1,..,10} the best
generalization was n € {1,..,52} (the average generalization was n € {1,..,28}).
A training set with n € {1,..,40} was sufficient for perfect generalization up to
the tested maximum: ne€{1,..,500} (sequences of length up to 1500).

LSTM worked well for a wide range of learning rates (about three orders of
magnitude) — see Table 1. Use of the momentum algorithm [7] clearly helped
to improve learning speed (allowing the same range for the initial learning
rate). The choice of learning rate did not affect generalization performance
(not reported in Table 1).

5.2 DEKF-LSTM results

The DEKF-LSTM combination significantly improves the LSTM results. Very
small training sets with n€ {1,..,10} are sufficient for perfect generalization up
to values of n € {1,..,2000} and more: one of the experiments with § = 102
gave a generalization set with n € {1,..,10000}. We ask the reader to briefly
reflect on what this means: after a short training phase the system worked so
robustly and precisely that it saw the difference between, say, a3338p8888.8888
and 38885888 8889

With training set n € {1,..,10} and § = 10 the average generalization set
was n € {1,..,434} (the best generalization was n € {1,..,2743}), whereas with
the original training algorithm it was n € {1,..,28}. What is more, training
is usually completed after only 2 - 103 training strings, whereas the original
algorithm needs a much larger number of strings.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

Table 1: results for CSL a™b"c™ for training sets with n ranging from 1 to 10
and from 20 to 21, with various (initial) learning rates (10~%) with and without
momentum (momentum parameter 0.99). Showing (from left to right, for each
set with and without momentum): the average number of training sequences
and the percentage of correct solutions once the training set was learned.

,..,10) (20, 21)
Momentum Constant Momentum Constant
Train | % | Train | % | Train | % | Train | %
a| Seq | Corr | Seq | Corr | Seq | Corr | Seq | Corr

[10%] [10%] [10%] [10%]
1 - 0 - 0 - 0 - 0
2 - 0 - 0 - 0 - 0
3 - 0 68 100 - 0 1170 30
4 20 90 351 100 - 0 7450 30
) 45 90 3562 | 100 127 20 1205 20
6 | 329 100 - 0 1506 20 - 0
7 | 3036 | 100 - 0 1366 10 - 0

Table 2 shows the influence of the parameter §, which is used to determine
the initial error covariance matrix in the Kalman filter. The rest of the param-
eters are set as indicated before, except for the covariance matrix of artificial
process noise which is annealed from 0.005 to 107° for the training set with n
being either 20 or 21.

We observe that learning speed and accuracy (percentage of correct solu-
tions) are considerably improved (compare Table 1). The number of training
sequences is considerably smaller, and the percentage of successful solutions in
the case of (20,21) is far greater.

However, DEKF-LSTM’s computational complexity per time step and weight
is much larger than LSTM’s. To account for this we derived a relative CPU
time unit that corresponds to computation time for one epoch (i.e., 1000 se-
quence presentations) of LSTM training. This relative CPU time is shown
for DEKF-LSTM in parentheses in Table 2 and can be compared directly to
“number of training sequence” values in Table 1.

A comparision of LSTM and DEKF-LSTM using this relative measure re-
veals that the additional complexity of DEKF-LSTM is largely compensated
for by the smaller number of training sequences needed for learning the train-
ing set. Compare, for example, the (20,21) case. DEKF-LSTM with § = 102
achieves 90% correct solutions in 84 relative CPU units. This compares fa-
voribly with LSTM performance (see Table 1 for LSTM figures).

A lesser problem of DEKF-LSTM is its occasional instability. Learning
usually takes place in the beginning of the training phase or never at all. All
failures in Table 2 are due to this.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

Table 2: results for CSL a™b"c" for training sets with n ranging from 1 to 10
and from 20 to 21, using DEKF-LSTM with different initial values for elements
of the error covariance matrix, —'. Showing (from left to right, for each set):
the average number of training sequences (CPU time in relative units given in
parenthesis, see text for details) and the percentage of correct solutions until
training set was learned.

(1,.,10) (20,21)

§ =10° | Train % Train %

with b = Seq | Corr Seq Corr
1107) [10°)

-3 2(46) | 20 - 0

-2 2 (46) | 80 4 (84) 90

-1 2 (46) | 100 4 (84) 70

0 2 (46) | 60 8 (168) 70

1 2 (46) | 100 | 12 (252) | 60

2 2(46) | 70 4 (84) 50

3 2 (46) | 80 5 (105) 50

5.3 Analysis of the network solution

How does LSTM solve the CSL a™b™c™ problem? With both training ap-
proaches, the network uses, in general, a combination of two counters, instan-
tiated separately in the two memory blocks. For example one counter would
increase on the symbol a¢ and then decrease on the symbol b. By counting up
with a slightly lower stepsize than it counts down, such a device can identify
when an equal number of ¢ and b symbols have been presented. At any time
the occurrence of a ¢ symbol would cause the block to close its input input
gate and open its forget gate, emptying cell contents. A second counter would
do the same thing for symbols b, ¢, and a, respectively. In this case an equal
number of b and ¢ symbols would bring about the prediction of sequence ter-
minator 7T'. In short, one memory block solves a™b™ while another solves b™c".
By working together they are able to solve the much more difficult CSL task.
All of this works in extremely precise and robust fashion — otherwise it would
be impossible to separate strings such as a!900p1000,1000 55 10003999 1000,

6 Conclusion

LSTM is the first RNN to generalize well on non-regular language benchmarks.
But by combining LSTM and the decoupled extended Kalman filter DEKF
we obtain a system that needs orders of magnitude fewer training sequences
and generalizes even better than standard LSTM. The hybrid requires only
training exemplars shorter than a''b''c!! to extract the general rule of the

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 369-376

context, sensitive language ab"¢™ and to generalize correctly for all sequences
up to a'000p1000,1000 554 beyond.

We also verified that DEKF-LSTM is not outperformed by LSTM on other
traditional benchmarks involving continuous data, where LSTM outperformed
traditional RNNs [6, 4]. So DEKF-LSTM is not overspecialized on CSLs but
represents a general advance. The update complexity per training example,
however, is worse than LSTM’s, which is local in time and space.

Acknowledgments. This work was supported by Mantik GmbH (Berlin),
SNF grant 2100-49’144.96, “Long Short-Term Memory”, and Generalitat Va-
lenciana grant FPI-99-14-268.

References

[1] M. Boden and J. Wiles. Context-free and context-sensitive dynamics in recurrent
neural networks, 2000.

[2] S. Chalup and A. Blair. Hill climbing in recurrent neural networks for learning
the a™b™c" language. In Proceedings of the 6th Confernce on Neural Information
Processing, pages 508-513, Perth, 1999.

[3] F. A. Gers and J. Schmidhuber. Recurrent nets that time and count. In Proc.
IJCNN’2000, Int. Joint Conf. on Neural Networks, Como, Italy, 2000.

[4] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000.

[6] Simon Haykin. Neural networks: a comprehensive foundation. Prentice-Hall,
New Jersey, 2nd edition, 1999.

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735-1780, 1997.

[7] D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning back
propagation. Technical Report CMU-CS-86-126, Carnegie—Mellon University,
Pittsburgh, PA, 1986.

[8] G. V. Puskorius and L. A. Feldkamp. Neurocontrol of nonlinear dynamical
systems with Kalman filter trained recurrent networks. IEEE Transactions on
Neural Networks, 5(2):279-297, 1994.

[9] P. Rodriguez, J. Wiles, and J Elman. A recurrent neural network that learns to
count. Connection Science, 11(1):5-40, 1999.

[10] Paul Rodriguez and Janet Wiles. Recurrent neural networks can learn to imple-
ment symbol-sensitive counting. In Advances in Neural Information Processing
Systems, volume 10, pages 87-93. The MIT Press, 1998.

[11] G. Z. Sun, C. Lee Giles, H. H. Chen, and Y. C. Lee. The neural network
pushdown automaton: Model, stack and learning simulations. Technical Report
CS-TR-3118, University of Maryland, College Park, August 1993.

[12] J. Wiles and J. Elman. Learning to count without a counter: A case study of
dynamics and activation landscapes in recurrent networks. In In Proceedings of
the Seventeenth Annual Conference of the Cognitive Science Society, pages pages
482 — 487, Cambridge, MA, 1995. MIT Press.

