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Abstract. State reconstruction of piecewise linear systems is addressed.
The description of such a family of systems involves, for each region of the
partitioned state space, an affine description and a switching rule which
orchestrates the way the dynamics changes from a linear form to another.
It results on two distinct states : the continuous state the discrete state.
An observer of piecewise linear systems must recover both of them. It is
shown that the discrete state can be recovered by a clustering technique.
The continuous state reconstruction is formulated as set of Linear Matrix
Inequalities to be solved. They are derived from the notion of poly-
quadratic stability and ensure global convergence of the observer.

1 Introduction

Piecewise linear systems have received a growing attention in control theory
[1][2]. For those systems, the state space is partitioned into distinct regions.
Their description not only involves an affine form related to a partition with
a one-to-one correspondence, but also a switching rule which orchestrates the
way the dynamics changes from a linear form to another. It results on two
distinct states : the continuous state describing the local dynamics in each
partition and the discrete state characterized by an indicator vector associated
to the visited region of the continuous state vector. Observer of piecewise lin-
ear system must recover the complete state vector. Two main problems arise.
Firstly, apart from a restricted class of systems, the discrete state is not known
a priori and must be recovered from available information, that are, the inputs
and the outputs of the system. Secondly, assuming that the discrete state is
recovered, the computation of the observer gain matrix must ensure global sta-
bility of a time-varying reconstruction error equation involving switches among
a finite set of constant dynamical matrices. For the time being, most of rigorous
proofs of convergence relies on Lyapunov approach often involving quadratic
Lyapunov functions.

In this paper, an attempt to provide a solution to the open problem, detailed
above, of state reconstruction of piecewise linear systems is suggested. On one
hand, it is shown that the problem of discrete state reconstruction is equivalent
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to clustering and a neural classifier achieves such a task. On the other hand,
as conditions of convergence based upon quadratic Lyapunov function are con-
servative, a recent and novel notion named poly-quadratic stability, consisting
in checking for a parameter Lyapunov function provided in [3][4] is recalled.
The interest of the combination of those both points relies on the fact that it
enables to enlarge the class of discrete time piecewise linear systems for which
an observer can be designed.

The layout of this paper is as the following. In section 2, problem of observer
design for piecewise linear systems is stated. In section 3, a solution to discrete
and continuous state reconstruction is presented. Finally, 4 is devoted to an
illustrative example through a chaos synchronization problem.

2 Problem formulation

In the remainder of the paper, 7" stands for transposition. For some symmetric

matrices X, X > 0 indicates that X is positive definite and the symbol (e)7
denotes each of its symmetric block.
Consider the discrete time system :

Tk+1 — Aamk + Ea + Bauk
Yk = Cazg

(1)

where z € R, y, € R™, up € R?. ais a piecewise constant function of xj, from
R™ to a finite index set I = {1,..., P}. The state space R” is partitioned into
P regions denoted R, with Ugif C R™. « is thus a switching rule expressing
that a unique constant matrix A, is assigned to the region R, visited by z; at
the discrete time k.

Consider the observer described by :

Thyr = Aﬁ@k + Esz + Bpur + Lg(yr — k) 2)
Yk = Cpy

B is a switching rule which will be discussed in the forthcoming section.
Introducing a switching rule to describe a piecewise linear dynamics, instead
of involving the running index of the matrices at each discrete time k is more
convenient for defining a so-called ”indicator vector”. This quantity enables to
conveniently tackle the problem of state reconstruction.

Definition 1 An indicator vector associated to both a switching rule v and a
vector vy, is the quantity £ = (&, .. ,f,f)T whose components are given by :

55 — { Lif y(vg) =p

0 otherwise

For (1), v = a and v, = z, while for (2), v = 8 and v, will be defined later.
Exploiting indicator vectors related to the respective switching rules a and
B, all matrices Y, of appropriate dimensions involved in (1) and (2) can be
rewritten as follows :

P
Yy = Z &Yy (3)

p=1
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System (1) is piecewise linear and is completely defined at time k& by both zj
referred to as the ”continuous state” and the indicator vector ;" referred to
as the ”discrete state”.

Problem is to design an observer such that Z; tends asymptotically towards
for any initial state Zg, that is :

lim ||z, — 2]l = 0 Vo (4)
k—o0

The observer is completely determined by the function § and the gain Lg =
25:1 &r L, according to (3).

3 Piecewise linear observer

The proposed design involves two successive steps : the recovering of the dis-
crete state £,'", then the reconstruction of the continuous state zy.

3.1 Discrete state reconstruction

Reconstruction must be achieved in such a way that both discrete states &,"

of (1) and &;"" of (2) coincide. Due to the switching rules, an explicit recursion
of the form &) = f(x1,,"") cannot be obtained. Furthermore, the argument
v of B cannot be the same as the one of « since xj, is not available. Discrete
state reconstruction aims at building a switching function g and finding an
argument v, depending on available information which guarantees £,"* = &,"".
Reconstruction can be viewed as a clustering process. Indeed, let assume that
there exist integers M, N and a nonlinear clustering function g from RM*N to
{0,1}F such that " = g(Ykss- -, Yk—N+ Uk, » - - - ,ug—pr). Next, we can define
B and Vg = [Yky -+ Yk N, Uky»- -, Uk_nr]’ as respectively the switching rule
and its corresponding argument such that the indicator &, coincides with
g(vr)-

As in general, g cannot be found explicitly, it must be estimated from a finite
set of [ pairs (£, vy), generated from the simulation of (1). vy constitutes
the regressor vector while &* is the target. We must resort to classifiers to
accomplish such a task. Support Vector Machines or Artificial Neural Networks
can be candidates as clustering machines.

Now, assume that the clustering function g achieves the discrete state recon-
struction. As a consequence, the equation governing the convergence error
€x = T — & can be obtained first by subtracting (1) and (2). In addition,
taking into account (3) and the fact that the indicator vectors &°* and & "
coincide yields :

P
€k4+1 = fo(Ap — LpCp)ek (5)
p=1

Global convergence of (5) amounts to an achievement of the continuous state
reconstruction. This later requires the computation of suitable gains L,. This
is done through the poly-quadratic stability notion recalled in the following
subsection.
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3.2 Continuous state reconstruction

The reconstruction of the continuous state xj, relies on the recent and novel re-
sults of poly-quadratic stability of [4][3] from which a definition and a theorem
are recalled. &" and &, coinciding, as a shorthand, they will be conveniently
denoted &.

Definition 2 System (5) is said to be Poly-Quadratically stable if there exists a
Positive Definite Parameter Dependent Quadratic Lyapunov Function (PDLF)

Ver, &) = €X' P(&)ex with P(&,) = 25:1 & Py whose difference along the
solution of (5) satisfies

L =V(ert1,8&k+1) — Vier, &) < —ao(|lexl]) (6)

with ag @ Keo function'.

The various Py, p = 1,..., P, are symmetric positive definite (SPD) matrices of
appropriate order.

The following theorem gives a necessary and sufficient condition for the piece-
wise linear system (5) to be Poly-Quadratically stable and then ensures global
convergence.

Theorem 1 Global convergence is achieved, if V(i,j) € {1,..., P}, there exist
symmetric matrices S;, matrices F; and G; which are solutions of:

Gi+G] =S; ()7
Atg, ~crr s, |70 M
The resulting gains L; are given by L; = (G;l)TFiT. In this case, the time
varying PDLF corresponds to P (&) = Zle &St

Remark 1 Poly-Quadratic stability is sufficient for asymptotic stability. It is
less conservative than Quadratic stability, in spite of the fact that it involves
more LMIs. Indeed, Quadratic stability corresponds to G; = S; = S, a constant
matriz.

4 Illustrative example

For the purpose of illustration, we address the problem of chaos synchronization
of piecewise linear systems. It is a particular case of the more general problem
described in the paper since autonomous dynamics are considered.

The considered map is characterized by :

- xp, = [z} 237 and &, = [2} 23])7

A= [ }? . } Iy = —1.05, hs =2, By = [0 0)7, By = [0 — 18.3]”
1

LA function « : [0,00) — [0,00) is a koo function if it is continuous, strictly increasing,
zero at zero and unbounded (a(s) — oo as s — 00).
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Two regions R; and Ry are respectively assigned to A; and A,. R; is the set
{zk|z}, < 6} and R» is the set {zx|r} > 6}. The output signal y, corresponds
to a constant matrix C' = [2 2].

For this example, 700 pairs (£, ", v;) have been collected to train a conventional
Multilayer Perceptron (MLP) with one hidden layer of 25 sigmodal units. Here,
M = 0 as autonomous case is treated and we set N = 3. In chaos synchro-
nization context, N is related to the so-called "embedding dimension”. The
ANN implements the clustering function g ensuring discrete state reconstruc-
tion. Continuous state reconstruction is achieved by suitable observer gains
computed by solving the set a Linear Matrix Inequalities (7). Solution of (7)
gives the gains Ly = [0.1326 — 0.0256]7 and L, = [0.1328 0.4336]%.
Simulations of synchronization have been performed over 3000 points split into
700 training points and 2300 test points.

Results are depicted on Fig 1. It can be noted that some test errors on the
discrete state reconstruction are likely to occur. On average, occurrence is few
(0.6%) and the errors are well cancelled (Fig 1D).
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Figure 1: A : chaotic attractor and regions R;, R. B : error of reconstruction
|lex|]- C,D : transients towards zero for learning sequence (C) and for an error
occurring in the test sequence (D).
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5 Discussion and concluding remarks

Throughout this paper, a observer design procedure for the reconstruction of
the state of piecewise linear systems has been proposed. Those systems are
characterized by both a continuous state vector for which local linear dynamics
can be described and a discrete state vector for which no explicit dynamics
is available. It has been shown that discrete state reconstruction amounts to
build a clustering machine which must be trained such that indicators vectors
of the system and the observer coincide. This allows to express the dynamics
of the reconstruction error as a piecewise linear dynamics. Then, continuous
state reconstruction can be tackled by a Lyapunov theory. The adopted theory
is less conservative than the usual quadratic one : it is called poly-quadratic
and involves a Parameter Dependent Lyapunov Function.

The assessment of the proposed reconstruction approach essentially depend on
the machine learning performance. Indeed, problem is to guarantee a powerful
generalization ability in order to avoid as many misclassified patterns as possi-
ble. To cope with this problem, the classical trade-off between complexity the
machine and accuracy of the training error must be satisfied. Nevertheless, as
opposed to ”smooth” nonlinear systems, as a small perturbation can cause a
misleading switch, it seems that further works would require a thorough effort
directed to derive confidence bounds on the prediction and to refine strategies
when detecting an error.
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