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Abstract 
 
Feed-forward networks are generally trained to represent functions or many-to-
one (m-o) mappings. In this paper however a feed-forward network with 
modified training algorithm is considered to represent multi-valued or one-to-
many (o-m) mappings. The o-m mapping is viewed as an m-o mapping where 
the values corresponding to a value of the independent variable are sets. Thus 
the problem of representing a o-m mapping has been converted into a problem 
of training a network to return sets rather than vectors. The resulting o-m 
mapping may have variable multiplicity leading to sets of variable cardinality. 
The crisp sets of variable cardinality in turn are replaced by fuzzy sets of fixed 
cardinality by adding elements, called “do not cares” which have membership 
values of zero. Since the target outputs of the feedforward network are now sets 
of fixed cardinality and the actual output of a feedforward network is a vector 
the training algorithm is modified to take into account the fact that order should 
be removed as a constraint when the error vector is calculated. Results of 
simulations show that the method proposed is quite effective. 
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1 Introduction 
 
Functions are many-to-one in the sense that an input produces a unique output. One-
to-many (o-m) valued-ness however is common in everyday experience and thereby 
in data that represents observations since we may perceive different things from the 
same data.  
In [KY1998] it was demonstrated that the bottleneck network could learn many-
valued functions. The authors studied the problem of recalling the hand configurations 
required to grasp an object based upon its image. In [KY1998 , HSMMY1999] the 
relaxation method for recall described in [UFSK1995] is replaced by successive 
iteration. The result of this was that the recall process was accelerated four-fold. The 
authors of another paper [TN1998] discuss a very similar method for using a recurrent 
neural network for approximating a certain version of o-m mappings.  
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Bishop [Bish1995] introduces a new class of neural network models obtained by 
combining a conventional neural network with a mixture density model. The complete 
system is called a Mixture Density Network. Lee and Lee [LL2001] also address the 
problem of multi-value regression estimation with neural network architecture. They 
confine the multi-regression problems to those mapping vectors to a scalar with a 
single input vector mapping to several scalars.  
The paper is organized in the following manner. First some work published by others 
was briefly described. This is followed by an illustration of multi-valued-ness and a 
brief description of the algorithm. A simulation describing the results of applying this 
approach is then described. The paper ends with a description of some of the 
problems with the method proposed here. 
 
 

2 Storing a many-many mapping on a feed-forward Network 
 
The method for storing a o-m mapping on a (Feed-forward Network) FFN is based on 
interpreting the o-m mapping as a mapping with sets as dependent variable. The 
outputs of a feed-forward network however are of fixed dimension and order is 
significant. Sets on the other hand are unordered.  
An example of a many-many mapping with varying multiplicity is the mapping from 
ages of parents and number of years married to ages of their children as depicted in 
Table 1 below. 
 
Age of 
Husband 

Age of 
Wife 

Number of Years Couple is 
Married 

Ages of children 

22 19 1 {0.8} 
30 27 4 {} 
37 35 10 {1.5, 2.8, 8.7} 
45 47 15 {10.8} 
54 50 20 {18.4, 6.9,12.2} 
60 55 35 {20.8,18.1,25.4, 30.6} 
 

Table 1 Example of many-many mapping with varying multiplicity 
 
There are problems in implementing this mapping on a feed forward network both in 
terms of training and also retrieval. If we set the number of output units equal to the 
maximum cardinality of the target output sets we still have a problem during retrieval 
because it has to be known how much of the output is applicable.  
A potential solution for the problem of varying cardinality is to have another output 
unit present the cardinality of the output. The cardinality indicates how many of the 
output elements to include in the set defined by the output. Thus (3, 4.5, 6.8, 9.2, 8.7) 
corresponds to the set {4.5, 6.8, 9.2}.  During training the last element in the 
preceding case is a "do not care."  The solution suggested above has been dealt with in 
great detail in another paper  by the author. 
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There is another way of dealing with the problem of variable cardinality and that is to 
use fuzzy sets [Pedr 1995] of fixed cardinality to represent crisp sets of variable 
cardinality. A crisp set {} can be represented by a fuzzy set of greater cardinality by 
adding any number of elements whose membership values are 0. Thus the set {4.6, 
5.2, 6.4} can be made into an equivalent set of ordered pairs with cardinality of 5 as 
{(1, 4.6), (1, 5.2), (1, 6.4), (0, D0), (0, D1)}. D0 and D1 may be any values and stand 
for “do not cares”. ( 1,4.6) means that 4.6 is included in the set. The first value in each 
pair is a membership value and indicates the degree to which the second value in the 
pair is included in the fuzzy set. During training of the feed forward network the 
target pairs may be in any order to facilitate training.  
During use of the network for function value determination the output of the feed-
forward network will be a fuzzy set but the target output however is a crisp set. This 
discrepancy is  rectified by converting the fuzzy set to a crisp set using a threshold, t. 
The gradient method of training requires that an error vector be calculated. This 
means that the difference between two membership functions has to be determined. 
Since the membership function for the target is crisp the difference may be calculated 
as follows.                                                                      
Definition  
 
Let (x0, x1) ∈  {0,1}×ℜ  and (y0, y1)  ∈  [0,1]×ℜ   x0 and y0 are membership values 
while x1 and y1 are  set members 
Let t  ∈  (0,1] represent threshold  
The difference between the two pairs, (x0, x1)and (y0, y1)    is defined as 
 (t - y0, x1 - y1)       for x0=1 
 (t– y0, 0)                                               otherwise 
The distance between the two pairs is the Euclidian length of the difference vector. 

  
For the distance between a crisp and fuzzy membership function we then take the 
square root of the sum of the squares of the distances between the individual pairs. 
Since order in a set is not defined an order may be selected to reduce the distance 
between the two sets. A ranking of pairs may be based on lexicographic order defined 
as follows. This way the membership value plays a more dominant role.  
 
Definition 
 
(a,b)<(c,d)⇔(a<c)∨ (a=c)^(b<d) 
 
If we have to find the difference between two membership functions of unequal 
length we expand the shorter one so that it is the same length as the other. 
 
 

3 Architecture and Training Algorithm 
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Let us now consider the feed-forward network to be used and its training algorithm. 
The network used for training consists of an input layer, an output layer and one 
hidden layer. The  output units in the even positions have sigmoid activation functions 
while the other output units have identity activation functions.  
The training algorithm the  gradient method. The gradient of the output with respect 
to all unknowns is found by feeding the gradients forward as described in 
[BROU1997]. out(2) is the actual output of the network. ∇  stands for gradient while C 
represent the cost or error function to be minimized. W(k)  k=1,2 are the connection 
matrices for the layers.  
If we use the cost function traditionally used in back propagation 
 
                                        C = .0.5 * +/(out(2)-d)*(out(2)-d) 
we get         
                                          ∇ out(2)C = (out(2)-d) 

 

                                      ∇ W
(2) C=.(out(2) - d) * f ` (W(2) . out(1),-1) * / out(1),-1  (1) 

 

     ∇ W
(1) C =.+/(out(2) - d) * f ` (W(2) . out(1),-1)*W(2)’* “1_ f ` (W(1) . out(0),-1) * / 

out(0),-1 
 
+/ calls for summation over the first dimension of the array that follows as operand.  
*/ represents the outer product. W(2)’ is W(2) with the last column removed. Note that 
the last column of the connection matrices now includes the bias terms and out(0) and 
out(1) are appended with –1. * “1_ means that each row of W(2)’ ,is multiplied by the 
vector f ` (W(1) . out(0),-1) .  
A membership function is used to convert sets of variable cardinality to constant 
cardinality. Thus the crisp target sets to be incorporated on the feed forward network 
are converted into fuzzy sets all of which are of the same cardinality. The actual 
output is interpreted by having the output units in the even positions produce the 
membership values and the units in the odd positions output the set members. The 
members in the fuzzy set can be ordered in any way without changing the fuzzy set as 
long as membership values and member values are bound together. To obtain an error 
vector for a particular output vector and target membership function, the pairs in the 
target vector will be ordered so as to reduce the error and consequent modification in 
weight vectors required. To effect this the target fuzzy set pairs will be ordered in the 
same way as the corresponding actuals using lexicographic ordering.  
For example let the actual output be (0.86 8.96  0.52  2.54  0.73  5.23). The values in 
the even positions are interpreted as membership values.  Let the target output be the 
set  {8.87,9.24} which when expanded into a fuzzy set becomes {(1, 8.87), (1, 9.24), 
(0,-0.23)} The lexicographic ranking for the actual is 2, 0, 1. This means that the 
target should be {(0,-0.23), (1, 8.87), (1, 9.24)} .  Strictly speaking the gradient of the 
cost function with respect to output is not just the error vector because the error vector  
also changes if the ranking of the output changes since then the target matching to the 
output will change. However this aspect is not taken into account here. 
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4 Simulations 
The  data used for testing the algorithm is derived from the inverse of the many to one 
function x+ 0.5*sin 2πx. The relation graphed below is the inverse of this function. A 
similar function was used by  [Bish1994 ] in their report. The inverse is single valued  
and 3-valued depending upon the value of the independent variable. 
 

 
Figure 1  Inverse of  x+ 0.5*sin 2πx.                             Figure 2  Training time  in epochs 

 
 

After 2500 epochs the mean square error was 0.75. The testing mean square error was 
0.77.  Table 2 shows a small subset of the test results. mv is the membership value.  
Column v is the column of set values whose membership value is in the preceding 
column. Note ordering of the pairs in the target is irrelevant.  
 
 
 Target y Actual y 
x mv v mv v mv v mv v mv v mv v 
0.204 1 0.05 0 1507 0 1081 1 0.160 0 _0.208 0 0.443 
0.764 1 0.267 1 0.337 1 0.942 1 0.962 1 0.251 1 0.327 
0.724 1 0.229 1 0.379 1 0.932 1 0.849 1 0.254 1 0.483 
0.684 1 0.204 1 0.406 1 0.921 1 0.674 1 0.292 1 0.627 
0.884 1 0.972 0 1513 0 1637 1 0.954 0 0.393 0 _0.055 
0.604 1 0.168 1 0.45 1 0.899 1 0.292 1 0.416 1 0.833 
0.924 1 0.982 0 1515 0 1427 1 0.958 0 0.421 0 _0.132 
0.564 1 0.153 1 0.47 1 0.888 1 0.143 1 0.475 1 0.889 
0.364 1 0.092 1 0.566 1 0.818 1 0.186 1 0.557 1 0.835 
0.484 1 0.127 1 0.507 1 0.863 1 _0.012 1 0.559 1 0.923 
0.404 1 0.103 1 0.546 1 0.835 1 0.062 1 0.583 1 0.881 
0.004 1 0.001 0 1425 0 1843 1 0.002 0 _0.744 0 0.126 
 
Table 2  The target output and actual output for some of the test data. 
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5 Summary 
 
It has been shown how the gradient descent training algorithm for feed forward 
networks can be modified so that a feed forward network can be used to represent a 
one-to-many mapping where the multiplicity is variable. The method proposed here is 
less complex than some of the other methods proposed in the literature.  
Its drawback is that the one-to-many valued-ness must be explicit in the training data 
and it will not do to have almost one-to-many valued-ness in the training data. This 
might be the case where errors have converted the one-to-many data into many-to-one 
data. If the latter is true the data has to be pre-processed to bring out the one-to-many 
property. 
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