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Abstract. Starting from a recall of several classical – and less classical - remarks
about high dimensional data spaces, this paper gives a bird's eye view over
various techniques of data reduction, from linear multidimensional scaling to
non-linear and non-parametric methods. Two kinds of approaches will be
presented, the first one operating in the feature space, the second one operating in
the dissimilarity space. A special attention will be devoted to the CCA algorithm,
in a version which aims at capturing the mean manifold spanned by the data
vectors. Some examples from artificial and real data are given.

1. Introduction

The general problem with high-dimensional data sets is, using the inherent
redundancy of the data, first to obtain a reduction of dimension, second to obtain a
representation of the intrinsic dimension of these data. That is to provide a "picture"
which can be used to give a meaningful interpretation of the data. This can be done
through various techniques such as Multidimensional Scaling (Shepard, 1962; Cox &
Cox, 1995) or Non-Linear Mapping (Mardia et al. 1979; Borg, 1997).

These algorithms are based on the point mapping of n-dimensional vectors to a lower-
dimensional space such that the inherent structure of the data is approximately
preserved. The input data can be either vectors from a set of measurements (the input
space is known), or an inter-point Euclidean distance matrix or a dissimilarity matrix
(where the dimension of the input space is unknown). In some cases the data are non-
metric: only the rank orders of the distances are known (Kruskal, 1964). For a
similarity matrix {sij}, often found in psychometry, a conversion into a distance

matrix {dij} is required, for example by: d s sij ij ji= - -2 , (D'Aubigny, 1989).

Notations. In the sequel, we will use the following notations:
A data set is composed of N   observations   (objects), which are considered as   vectors    xi

of n features ( xi
n i NŒ =R , .. ,1 ). According to some given norm, an inter-point

distance    (or dissimilarity) matrix D is defined by: D D= { } Œ ¥dij
N N, R .

2. High-dimensional data spaces

A well known property of high dimensional spaces is the phenomenon of empty space
(reviews in: Donoho, 2000; Verleysen, 2001; Landgrebe, 2002). This is illustrated by
various considerations as follows.

∑ The    Euclidean norm     of the data tends to be constant as n increases: It has been
demonstrated (Demartines, 1994) that for vectors with random iid components,
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the mean of their Euclidean norms increases as n while their standard deviation
tends to a constant.

∑  The   volume of a hypersphere   of radius r, compared to the volume of the
hypercube of side 2r, tends to be negligible. The ratio between the sphere's and

the cube's volume, given by R
n n

n

n
= - ( )

1

2 1

2

2

p
G

, decreases very rapidly to 0 as n

increases (fig. 1), even for small values of n (10-20), it may become negligible.
The consequence is that, for vector quantization of the space, the number of
prototypes to be defined may become huge if the cost function is based on the
Euclidean metrics.

Figure 1. Sphere-to-cube volume ratio,
according to the dimension n of the space.

1
1-e

Figure 2. The external shell of a
hypercube contains almost all the
available volume (see text).

∑ The    volume of a shell  , defined (fig. 2) by the space between the unit hypercube

and a centered hypercube of side (1-e), is: 1 1- -( )e n . It tends to 0 as n increases:

for n=50 and e=5%, the shell represents 92.3% of the hypercube's volume! This

fact is of particular importance if a Minkowski norm is considered (see later).

∑     Gaussian distribution   : If the data
are normally distributed, the
probability density of finding a
point at distance r from the center
of the distribution is given by:
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 (fig. 3).

It is maximum for r nl = -1.
This means that the space is
relatively empty at the center,
where the gaussian distribution is
maximal!
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Figure 3. The probability density of a
point at distance r from the center is,
maximal at n-1

∑  The    number of training samples  , in supervised classification, is related to the
dimension. It has been shown (Fukunaga, 1990; Lee & Landgrebe, 1993) that the
number of samples should be proportional to the dimension for linear classifiers,
and to the square of the dimension for quadratic classifiers. However, for non-

parametric classifiers, it may grow exponentially with the dimension: N Knª .
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∑    Projections  : according to the central limit theorem, low dimensional linear
projections tend to be normally distributed as the dimension increases. This
would mean that little information could be extracted in such cases (projection
pursuit framework).

∑  The    scalar product   of a unit vector on
the diagonal with any axis gives an
a n g l e  d e f i n e d  b y :
cos q( ) =

Æ•
æ Ææææ1 0

n n
.  B e

careful, this does not mean that the
diagonal is really orthogonal to the
axes! Figure 4 shows that the angle is
around 80°-95° for a large scale of
dimensions.

Fig. 4. Angle between the diagonal
and the axes in dimension n.

However, fortunately the observed data features are not fully independent. This means
that if the features are linked, the samples may span some subspace or some (even
non-linear) manifold of reduced dimension. Then, it is mandatory to find this intrinsic
dimension of the data set. Embedding it into a suitable subspace or manifold of low
dimension is a means to provide a simpler representation of the data, useful for further
classification tasks.

3- Finding the subspace or the manifold spanned by the data.

There are many methods for such a purpose, ranking from linear- to non-linear ones,
metric or non-metric, parametric or non-parametric (Shepard, 1962, 1965; Sammon,
1969; Pekalska et al., 2001). Here are some classical examples of these methods.

3.1. Classical MDS
Let us consider a dissimilarity matrix D issued from N observations, not related to any
known space (i.e. as obtained from a psychological experiment). Under the hypothesis

that the underlying space is Euclidean ( X Œ ¥RN n : N vectors xi in n dimensions), the
classical Multi-Dimensional Scaling (Mardia & al., 1979) provides a representation of
this unknown space.

If the distance matrix D Œ ¥RN N  is Euclidean, we consider the (positive definite)

matrix of its squared elements: D dij
( )2 2= { }. By using the centering matrix

J I 1 1= -Ê
Ë

ˆ
¯

1

n
T , the covariance matrix of the data is obtained by: B J D J= -

1

2
2( ) .

The factorization of B by its eigendecomposition gives XX B Q Qt t= = L , the
number of non-zero eigenvalues gives the dimension k of the representation space and

the (Nxk) data matrix is obtained by: X Q= k kL1 2
.

In the    non-Euclidean    case (D and B are not positive definite), various approximations
may be obtained, either by neglecting the negative eigenvalues, or by transforming

D( )2  as: D D I( ) ( )2 2 11Æ + -( )c T , with c m> l , lm  being the smallest

(negative) eigenvalue of B. Another method consists of defining a pseudo-Euclidean
space (Goldfarb, 1984) such as:

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 173-184



B X M X= T , with M
I

I
= ¥

- ¥

È

Î
Í

˘

˚
˙

p p

q q

0

0
, p and q being respectively the numbers

of positive and negative eigenvalues of B.

3.2. Non-parametric methods.
The main idea is the following: for every couple of distinct points (i,j), take every
inter-point distance Xij = ||xi - xj|| in the input space and find the corresponding inter-
point distance Yij = ||yi - yj|| in a lower-dimensional output representation space. This
can be done in different manners. One of them is basically to minimize the following

quadratic form: E Xij Yiji j= -( )Â
2

; , for example by means of some gradient descent

algorithm. If the dimensions of the input and output spaces are the same, the cost
function E can be made null. Some normalized versions have been proposed as:

E
Xiji j

Xij Yij
i j

=
Â

-( )Â
1

2
2

, ,
, or as E

Yiji j
Xij Yij

i j
=

Â
Â

1

1 2
2 4

, ,
, (Shepard, 1964),

the last one is computationally very demanding and the equilibrium point is difficult
to find. A better cost function, automatically normalized, has been designed
(Sammon, 1969) to favor the mapping of small distances in the input space, thus

assuring a "locally correct" topographic mapping: Es
Xij Yij

Xij
ij Xijij=

-( )
Â Â

2

through the "unfolding" of the data manifold.

However, this unfolding may be difficult or impossible to obtain in the case of
strongly folded data, simply because the favoring of small distance Xij must
sometimes be relaxed: in a U-shaped input distribution, the extreme points which are
not very distant should not contribute to the mapping cost function. We will see later
a more interesting cost function, in which the terms are weighted by short distances in
the output space: the CCA algorithm (Demartines & Hérault, 1997).

There are many other approaches to ascertain the structure of a data set. Apart from
the well known Self-Organizing Maps (Kohonen, 1989), which acts more as a vector
quantization under a topological constraint, there is the recent ISOMAP algorithm
(Tenenbaum et al. 2000). The input distances are based on a Dijkstra algorithm on the
graph obtained by considering the nearest neighbors. Then, a MDS procedure is
applied to find the representation space.

4- Metrics

There are many possible metrics which may be used to represent the data space,
though the Euclidean one is very common. We will give some emphasis to the

Minkowski metrics   for which the distance dij xik x jk
p

k

p
= -Â ( )È

ÎÍ
˘
˚̇
1

 has often been

considered as relevant for psychometric dissimilarities (Tversky & Krantz, 1970).

∑ The    L   p    (or Minkowski) norm        is defined by x p xk
p

k
p

= Â[ ]1 . If the data are

Lp-normalized ( x p = 1), they tend to map into the n-1 dimensional volume of
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the unit cube's external shell as p increases (fig. 5): this complies with the
property illustrated in figure 2.

∑     Filling the space   with Minkowski hyperspheres. The volume ratio of the unit

Minkowski sphere to the unit Lp cube is R p n n p= +( ) +( )G G1 1 1 . Fig 6 shows
that choosing p according to n helps to pave the space better than with Euclidean
spheres.

Figure 5. Lp  normalized data in 3
dimensions, with p=2, 4, 8.

Figure 6. Filling the unit cube by
Minkowski spheres.

∑  The   rank   r of the matrix D( )p
dij

p xik x jk
p

k= { } = -( )ÂÏÌÓ
¸̋
˛

 has a maximum

value of r n p= -( ) +1 2 . Hints for proof: write that line number i of the matrix is
a linear combination of r other lines. Then, every element is expressed as:

dij
p

is dsj
p

s

r
j N=

=
Â " Œ[ ]l

1
1, , , or: xik x jk

p
is xsk x jk

p

k

n

s

r

k

n
-( ) = -( )

=
Â

=
Â

=
Â l

111
. It

gives a set of equations where, after having developped the polynoms of degree
p, it is possible to estimate the number of independent equations. This number is
r, equal to the number of coefficients  l, that is, the rank of the matrix.

This result has several interesting consequences:
1. If the components xk are redundant (linear combinations or not), the number of

independent equations is reduced, and the dimension of the data space is n'<n.
2. If r=N, the number of observations may not be sufficient.
3. A data point is entirely defined by its r distances to other particular points. The

data may be represented equivalently in the space of distances (see after).

4. A constant Lp norm in the input space X is represented by a hyperplan in the r

dimensional space of distances D(p): this result may be of interest for kernel
classifiers which are built in the space of distance (Pekalska et al., 2001).

5. The space of Lp distances offers more degrees of freedom than the Euclidean
distance space because the rank of the distance matrix is higher.

6. If a class of points spanns a manifold of reduced dimension, the rank of its
submatrix is lower than that of the whole data set.

Another interesting approach recently proposed, consists of a supervised learning of
the suitable metrics, using information about external relevant data (Kaski, 2001). It
has been used for financial or genetic data, and for text retrieval.
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5- Dissimilarity based Discrimination

Up to now, we have considered the task of representing the high dimensional data.
Here we consider a discrimination task, from a specific point of view on
discrimination analysis from dissimilarity measures.
Classifying objects according to their proximity is a fundamental task of pattern
recognition and arises as a classification problem or discriminant analysis in
experimental sciences (Fukunaga, 1990). In many application cases (biology,
genetics, psychophysics, signal, image processing…), it is very hard to deal with an
explicit feature-space and metrics representation. In such cases, implicit
representations can be captured from the dissimilarity measures between observations
provided by the acquisition process. When the feature space is not available, classical
methods of Pattern Recognition cannot be directly used. As far as we know, four
approaches dealing with dissimilarity-based pattern recognition have been proposed,
starting from a dissimilarity matrix. (Pekalska et al, 2001) have named this approach
"featureless pattern learning".

1. Use a ranking-based method, like the "K Nearest Neighbours rule".
2 .  Use an extended version of the "Support Vector Machines" directly with

dissimilarity kernels, like "Support Vector Classifiers" (Vapnik, 1995;
Schölkopf, 1997).

3. Use Multi-Dimensional Scaling techniques (Borg & Groenen, 1997) or other
non-linear techniques such as CCA to embed dissimilarities into an Euclidean
feature space, then use features-based pattern recognition classifiers.

4 .  For each observation, consider the list of dissimilarities with all other
observations as a new features vector in a high dimensional space (one
observation equal to one dimension). Then use feature-based classifiers, for
example linear or quadratic classifier (Pekalska et al, 2001).

We have proposed an alternative approach to 1 and 4 (Guérin-Dugué & Celeux,
2000). Techniques for case 3, and especially those using CCA, are described in this
paper. To these constraints, we add another important one: the dissimilarity matrix
may be sparse. It is a common situation in practice, as the trend is to handle larger and
larger databases where not all the dissimilarity values are known. The direct
application of techniques based on the approach 4 is difficult in this case. But starting
from these dissimilarity- based features, we can learn statistical moments extracted
from the dissimilarity values between one observation and the remaining others. To
do this, it is well known, in the Euclidean context, that if we consider only the first
order statistics, the derived decision rule leads to a simple linear classifier
(classification upon the class position). Let us consider a discrimination task into K
classes (Nk observations in each learning class). In this framework, the linear decision

rule on a new observation is: class e
k

Min dk e kI( ) arg ( )= -Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙2 , with

kI
Nk

d
i j k

i j k=
Œ
Â =

1

2 2
2

,
( , ) ( )

w
wInertia ,

and dk e
Nk

d
i k

e i2 1 2( ) ( , )=
Œ

Â
w

.
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Non-linearity is introduced by means of the second order statistics with the variances
on the dissimilarity distributions. In an Euclidean context, these quantities take into
account the "shape" and the intrinsic dimension of each class. Even if these simple
geometric interpretations are no longer valid with dissimilarity matrices, these
approaches can be advantageously applied to provide new discrimination tools in such
a context.
In addition, data-driven learning procedures are defined (Guérin-Dugué & Celeux,
2000). We introduce some adaptation to a specific class through a "shape coefficient"
(variance / squared mean). It is defined from the classical coefficient of variation

(standard deviation / mean) for each observation class e
k

Min k kCshape e( ) arg ( )= ( )È

Î
Í

˘

˚
˙b ,

with b k a learning parameter optimised by cross validation, and the "shape

coefficient" defined by kCshape e dk e kI Variance dk e( ) ( ) ( ( ))= -Ê
Ë

ˆ
¯

2 2 .

Finally, the advantages of the proposed method are, (i) a data driven versatility
(adaptive parameters to learn the "shape" and the intrinsic dimension of each
category/class), and (ii) adaptation to incomplete dissimilarity data by estimating
statistics over all the available dissimilarity values.

6- CCA Curvilinear Component Analysis

X

x1
x2

x3

Dimension: n

Y

y1

y2

Dimension: n’< n

CCA

Figure 7. Principle of the CCA algorithm. After a possible vector quantization of the
input data space (X) in n dimensions, the local topology of the input average manifold
is mapped into an output representation space (Y) of dimension n' < n.

2.1. Principle
The input consists of N samples belonging to some theoretically n' dimensional
manifold, embedded in an n-dimensional input space X={xik}, i=1..N, k=1..n. But the
manifold may have some "thickness", therefore being possibly of higher dimension.
The goal is to find the dimension of the average manifold of the data and to map it
onto a representation space Y of lower dimension: to do this, we proceed to a Global
Unfolding together with a Local Projection onto the average manifold (fig. 7). We use
N neurons with n-dimensional input weights and n' dimensional output weights.

The CCA algorithm makes the neurons themselves find their neighborhood in the
output space by adapting their output weights to the local topology of the input
samples, according to some cost function.
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2.2. Choice of the cost function
Let us come back to the basic cost function (section 3.2), without normalization for

sake of clarity:

  

E Eijij= Â , with Eij Xij Yij= -( )2
. The input inter-point distances

Xij = ||xi - xj|| being given, we start from a random configuration of points yj. Then,

for every point yi in the output space, we move the points yj so that the terms Eij  are

minimized, for example by means of a gradient descent algorithm.

In order to map the average manifold of the data, two cases are to be considered
(see figure 8): first, we need a global unfolding of the average manifold of the data,
and second, we need a local projection of the data onto the average manifold.

a

unfolding

X

Y

1 2 3 4 5

1

2

3

4

5

Xij

Yij

llll

b

local projection

X

1 2 3 4 5

X’

Y

Figure 8. Illustration of the problem of data representation, in two cases: either only an
unfolding is desired, or also a local projection is desired (see text).

Unfolding   : Let us consider the first case alone (fig. 8.a). In order to unfold the data,
only some Eij  terms of the basic cost function need to be minimized: those for which

the distance Yij is smaller than some pre-defined distance l. Thus, allowing the

matching for only short distances is a way to respect the local topology. It has been
proved that this condition (applied on the output distances) ensures a global unfolding
much better than other mapping techniques, which apply it to the input distances
(Demartines, 1994). In this case, the general term to be minimized becomes:

Eij
u Xij Yij F Yij= -( ) ( )2

l ,with Fl ◊( ) = 1 for Yij < l  and Fl ◊( ) = 0 for Yij > l .

The choice of l strongly depends on the data structure (e. g. curvature of the average

manifold, spreading of the data around this manifold). As the data structure is
unknown, l decreases as the number of iterations increases, like in SOM's.

We should remark that, apart from the desired global unfolding, there is also some
tendency to make a local projection. Look at the input distribution in figure 8.a:
because we ask the mapping of X14 simultaneously with the mapping of X12, X23
and X34, the resulting compromise will lead to Y12 < X12 , Y23 < X23 and Y34 <
X34, which makes an approximate projection. This property will be useful hereafter.

Projection    (fig. 8.b). If the data were projected onto their average manifold, the
inter-point distances X'ij of the projected data would locally minimize the quadratic

error: (Xij2 - X'ij2). Then, the output vectors should map this local projection. That is,

translated into a cost function problem, they should minimize: Eij
p

Xij Yij= -Ê
Ë

ˆ
¯

2 2 2
.
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This applies only if Yij  £ Xij, a situation which is initiated by the above-mentioned
tendency to make a local projection. Conversely, if Yij  ≥ Xij , we are in the condition
of unfolding. Hence, the two situations (unfolding or projection) do not overlap, and

the global cost function can merge both Eij
u  and Eij

p
, provided that the gradient

continuity between them be assured when Yij = Xij (Herault et al., 1999). Notice that
the input distance Xij can be chosen of any type (Euclidean, Minkowski...).

2. 3. Monitoring unfolding and projection
The quality of the mapping is monitored during the gradient descent by the joint
distribution of input and output inter-point distances: dx/dy (fig. 9).

X

llll

Fl(Yij)dx

dy

d)

c)

Local
projection

Unfolding

a)

b)

Input space

Y Output space

Figure 9. Evaluation of the quality
of the mapping. a) Example of a 2-
dimensional data space with a 1-
dimensional average manifold. b) 1-
dimensional output representation. c)
The dx/dy joint distribution showing
the regions where unfolding and
local projection occur.

If the dimension of the output space is lower than that of the input space the joint
distribution dx/dy presents two aspects. In the case of unfolding, the points lie on the
dy>dx side of the first diagonal and, in the case of projection, they lie on the dy<dx
side. A "good" mapping is obtained when there is an unfolding for large dy values and
a projection for small values (fig. 9). Driving the value of l by hand often increases

the quality of the mapping.

2. 4. Example of a difficult mapping

a)    b)   c) 

Figure 10. Mapping of a 3-D data set of two interlaced rings onto a 2-D representation space. a)
input space, b) output space where the two rings are broken in order to satisfy at best the 2-D
representation, c) the result of the Sammon mapping.
In the case of a complex input data structure (fig. 10), CCA is able to find the "best"
solution for the mapping, possibly at the expense of breaking the local topologic
constraint when necessary. In this example, the inherent 2D structure is respected
everywhere but in two points, a feature outstripping many other mapping techniques.

7- Application examples

CCA has proved to be efficient in many applications of various kinds (Guérin-Dugué
et al., 1999), ranging from audio-visual speech recognition (Teissier et al., 1998) to
nuclear detectors (Vigneron et al., 1997).
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7.1- Scene classification by CCA
Another difficult problem that has been approached is the one of scene

categorization from spatial statistics (mean value) of the energy distribution of an
image in various frequency bands and orientations (Hérault J. et al 1997). An image is
analyzed by a bank of spatial filters, according to four orientations and five frequency
bands, ranging from very low spatial frequencies to medium ones. The global energies
of the 20 filters’ outputs constitute a 20-dimensional feature space, and each image is
a 20D vector in this space. By CCA (see figure 11 left), we have found that a 2-
dimensional representation was possible and that, in this space, the organization of the
data was surprisingly in accordance with some semantic meaning: Natural/Artificial
scenes for each side of the grey line, and Open/Closed landscapes along this line.

Beaches

Rooms

Cities

Forests

Mountains

Villages

CClloo
sseedd

OO
pp
ee
nn

Beaches Mountains

Forests

Cities

Villages

Rooms

Fig. 11. Two-dimensional representation by CCA of a set of 72 images. (Left) Images
are in a 20-dimensional data space obtained by the mean energies in four orientations
and five spatial frequency bands. (Right) Organization obtained with an input
psychological distance matrix collected on the same dataset with 20 human subjects.

Figure 11-right shows the perceptual organization of the same grey level images
set according to perceptual similarities. These perceptual estimates were captured
from a psychophysical experiment where each subject was asked to give similarity
marks (1 to 10) between images. The obtained map compares favorably with the
preceding one. Here, the clusters are better isolated, maybe due to the use of semantic
information by human subjects. As previously, a clear line separates artificial contexts
(human-made) from natural contexts (non human-made). This approach with
perceptual metrics (Mojsilovic & Rogowitz, 2001) is of highest importance for image
retrieval.

7.2- Cortical flattening by CCA
Cortical unfolding and flattening becomes a very important investigation tool

when studying the activity of human brain at relatively high spatial resolution (Tootel
et al., 1996). The problem is as follows: given 3D grey level images of the cortex (see
figure 6a), how is it possible to unfold and flatten a specific interface (surface
between grey and white matter) inside the 3D data? The intrinsic dimension here is
known (2D). The difficulty is in the intrinsic curvature of the cortical ribbon, the non-
linearity because of highly folded gyri and sulci, and the noise due to the MRI
acquisition and the segmentation process. By CCA, we have shown that a cortical
flattening can be easily obtained with several advantages, (i) fast processing time (fast
learning strategy of CCA), (ii) good quality of the resulting map by minimizing the
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overall distortion. A modified version of CCA has been developed for this application
(Guérin-Dugué et al, 2000) in which the input distance matrix has been processed by
geodesic distances along the cortical ribbon. In order to speed up these estimates, the
geodesic distances between all the points in the ribbon are only processed on few
points called "anchors". For the other points, only approximate geodesic distances by
Euclidean distances are computed inside a given neighborhood. The distances with
the anchor points give the global structure of the mapping, and the others give the
local structure.

 

Fig. 12. Flattening the cortical
surface. left bottom: segmented
slice of anatomical MRI, right:
2D flattened cortical ribbon of
the left hemisphere of visual
cortex after CCA. The color
information on the map
represents the local curvature.

This process is currently used at INSERM-Grenoble for fMRI (Warnking, 2002).
Figure 12 illustrates the flattening process. For the CCA algorithm, the number of
nodes is 19809 of which only 10 are anchors. For the others points (19799), only the
local distances are computed inside a 10 order neighborhood (for this example, the
mean number of neighbors per point is 395). Though a very sparse distance matrix
(only 2% of the distances are computed), both the global and local structure of the
data is captured. The computing time is 140 sec on a SUN ULTRA 10 workstation for
a spatial resolution of the anatomical MRI that gives an output map of 128 cm2.

4- Conclusion

As it can be seen from the various problems presented in this mini-review, the
world of high dimensional data is very complex. The schemes extrapolated from the
Euclidean geometry in 2 or 3 D seem no longer suitable to describe such spaces. The
first problem is that of defining a suitable metrics, either when the data space is
known, or when it is not available (i.e. in the case of dissimilarity matrices obtained
from human assessments). The second one is to find a "good" representation space of
low dimension, which would be useful for visualization purposes (2 or 3 D) or for
classification objectives. However, despite the important works devoted to this subject
during the second part of the 20th century, the fundamentals of the question remain
mostly unsolved: when good results happen to be obtained, it often looks more due to
chance than due to a reliable mathematical reasoning. Because of the increasing
number of researchers who broach this topic, many interesting views become
available, leading to a better and better insight of the question.
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