
Neural Dimensionality Reduction
for Document Processing

Mathieu Delichère 1 & Daniel Memmi 2

1 AMOWEBA
1 ave Berthollet, 74000 Annecy (France)

2 LEIBNIZ-IMAG
46 ave Félix Viallet, 38000 Grenoble (France)

Abstract: Document processing usually gives rise to high-dimension
representation vectors which are redundant and costly to process. Reducing
dimensionality would be appropriate, but standard factor analysis methods
such as PCA cannot deal with vectors of very high dimension. We have used
instead an adaptive neural network technique (the Generalized Hebbian
Algorithm) to extract the first principal components of a text corpus in order
to represent documents economically. The approach is efficient and gives
good results in a real Web page clustering application.

1. Introduction

The increasing flow of information, notably through the Internet, has given a
renewed importance to information retrieval techniques and textual document
processing. Information selection has now become a crucial issue.

To perform the indexing, retrieval and filtering tasks needed for document
management, the first operation is to represent texts in a concise operational format.
The most common approach is probably the vector-space model (Salton & McGill
1983)(Manning & Schütze 1999). A document is converted to a numerical vector,
generally by using lexical features which presumably indicate semantic content.

Some simple pre-processing is required to filter out function words (such as articles,
prepositions, particles...) and possibly to reduce morphological variants to a common
stem. Only the most significant words (usually nouns and verbs) are retained, and the
count of each such term in the document gives a vector component (i.e. a co-ordinate
in vector-space). A document thus becomes a vector in the space of possible words or
terms, in which the usual vector operations are now applicable, notably vector
comparisons for document classification tasks.

Unfortunately, this vector-space representation of texts gives rise to vectors of very
high dimension. Vectors of three to five thousand lexical features are common. Such
vectors are costly to store and to process. The vectors are also extremely sparse (often
containing 90% of null values), and there are obvious correlations between words,
making the representation highly redundant.

It is then important to try to reduce the dimensionality of document vectors before
further processing. Several methods are available, which can be seen as variants of
factor analysis, to find a smaller set of representative dimensions.

The problem is that most common algorithms for factor analysis cannot deal with
vectors of such size. We have then used a connectionist technique, the Generalized

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 211-216

Hebbian Algorithm, to reduce such large vectors. The adaptive neural algorithm has
given us good results for document processing, as will reported here.

2. Principal Component Analysis

Dimensionality reduction methods in general try to find a reduced number of new
dimensions to account for the original data (Jolliffe 1986).

Principal Component Analysis (PCA) is the best known of these techniques: the
new dimensions, linear combinations of the original features, are given by the
eigenvectors (ordered by decreasing eigenvalue) of the covariance matrix of input data.
The new features, called principal components, are uncorrelated and of maximum
variance so that the new representation is now minimal. Successive components are
of decreasing importance, and the first principal components (of higher eigenvalue)
usually account for most of the variance in the input data.

Unfortunately, the size of the covariance matrix is very large for high-dimension
data vectors, as input vectors of dimension n give rise to a matrix of size n×n.
Standard PCA methods cannot then deal with data vectors of more than several
hundred features, because space and time costs become prohibitive. This is precisely
the case for textual documents, which are often represented with hundreds or thousands
of lexical features.

One possible solution would be given by Latent Semantic Indexing (LSI) which
computes the singular eigenvectors of the document-term matrix (Deerwester et al.
1990). Because the number of documents is usually smaller, this matrix is much less
bulky and it is not necessary to compute a covariance matrix. Final results seem to be
semantically acceptable on the whole, but it remains unclear what the new dimensions
really mean theoretically.

Another approach is to map high-dimension vectors directly into a low-dimension
space using a random matrix, as demonstrated in the WEBSOM system (Kohonen
1998). This can be done very efficiently, but the conservation of semantic information
is by no means guaranteed.

We have then elected to use a neural network version of PCA, first proposed by Oja
and later developed by Sanger. This technique processes one data vector at a time
without ever using the covariance matrix. It is therefore readily applicable to vectors
of several thousand features.

3. The Generalized Hebbian Algorithm (GHA)

This is the rather unclear name for an ingenious neural variant of PCA. The original
idea was introduced by (Oja 1982) who devised a learning rule enabling a linear neuron
(y = w.x) to extract the first principal component of its input data:

w(t+1) = w(t) + η(t) [y(t)x(t) − y2(t)w(t)]

where x is the input vector, w the weight vector, y the output, and η is the learning
rate (typically between 0.1 and 0.01) which may be decreased with time.

The term y(t)x(t) is clearly Hebbian, maximizing output variance, and y2(t)w(t) is a
normalizing factor, designed to keep ||w|| close to 1.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 211-216

Learning thus causes the weight vector to represent the first covariance eigenvector,
extracting maximum input variance. The output, projection of the input vector on the
eigenvector, gives the new value of the input data along the new dimension (i.e. the
first principal component).

(Sanger 1989) generalized this learning rule to a one-layer neural network of linear
neurons receiving the same input vector, where each neuron extracts one principal
component in turn. The learning rule now becomes:

wij(t+1) = wij(t) + η(t) [yi(t)x'j(t) − yi2(t)wij(t)]

with each successive neuron seeing a modified input x'j(t) computed by subtracting
the operation of the preceding neurons:

x'j(t) = xj(t) − Σk<i wkj(t)yk(t)

The learning rule for GHA can also be expressed and implemented more concisely
with one equation only:

wij(t+1) = wij(t) + η(t) [yi(t)xj(t) − yi(t) Σk≤i wkj(t)yk(t)]

This generalized rule can be shown to converge toward the first covariance
eigenvectors, ordered by decreasing eigenvalue. The algorithm requires only one input
vector at a time, and can be implemented locally in true connectionist fashion. But it
is simpler and more efficient to train output neurons one after the other rather than in
parallel (although Sanger doesn't make this explicit).

Compared to standard PCA, GHA is an indirect method: correlations between
features of input vectors are estimated through the accumulation of repeated weight
changes during training, without computing the covariance matrix of input data.

Several variants of GHA have later been devised (Diamantaras & Kung 1996)(Fiori
2000) but they do not appear to improve markedly on Sanger's original algorithm,
which we have therefore retained here.

4. Document processing

We used a document corpus of about 90 Web pages (corresponding to a page or two
of ordinary text) in French, dealing with about 10 different themes. The Web pages
were taken from the bookmarks of a human user, and the goal was to perform an
unsupervised classification of the set of pages in the context of an interactive
browsing system. For more details, see (Delichère 2001).

4.1 Pre-processing

Each document (i.e. Web page) was represented by a lexical vector. Pre-processing
followed a common procedure: removal of function words by using a stop-list, 5-letter
stemming to reduce to root-forms (also called lemmas or terms), computing the
frequency of words by using a variant of the classical TFIDF measure: term frequency
in document divided by total frequency in corpus. The stop-list is the only language-
dependent item in the procedure and is easy to change.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 211-216

We only kept words (or more accurately, terms) above a given frequency threshold
and only if they could be found in more than 10 to 20% of documents (to ensure
minimum corpus significance, while the TFIDF measure gives more weight to more
discriminative terms). But no high-frequency threshold was used.

Pre-processing resulted in a representation space of about 600 dimensions. This is
in fact fairly low in such a domain, because our corpus was small; dimension usually
increases quickly with corpus size, to stabilize to about 3000 to 5000 lexical features,
depending on pre-processing. Yet 600 is already quite a large number for factor
analysis techniques.

4.2 Dimension reduction and clustering

Documents vectors were then fed to a GHA network with 20 output neurons for 600
input lines. The output number was chosen by trial and error: higher numbers resulted
in very small or inaccurate weight values for subsequent neurons, as computing errors
accumulated with successive components. To speed up learning, we used a sequential
version of GHA, by training output neurons independently one after the other, rather
than in parallel.

We used different learning rates between 0.1 and 0.01 in various experiments, but
we kept the value constant during learning. In fact we systematically stopped training
after 3 minutes' computation (on a standard workstation) rather than after a fixed
number of epochs, because we did not want to keep the end-user waiting.

The GHA algorithm thus reduced 600 dimensions to 20, projecting documents into
a new space. We called concepts the new dimensions, as they turned out to be quite
significant in themselves. Because they represent correlations between words in the
documents, the new features reveal semantic themes in the corpus. They are also
corpus-dependent and automatically adapted to different corpora.

Here are for example the concepts (new dimensions) computed by the first seven
neurons corresponding to the highest eigenvalues. Representing them by the terms
contributing most to each concept, one can easily recognize some recent events and
the interest centers of the bookmark-owner:

Concept 1: israéliens palestiniens barak sharon ehud
Concept 2: neurone couche entrée poids matrice
Concept 3: kasskooye manager newsletter incubation business
Concept 4: bové josé alegre brésil porto
Concept 5: kasskooye manager incubation business strategy
Concept 6: hoax virus hoaxbuster hybris pétition
Concept 7: hockey tennis sélectionner football
 (...)

We now used the reduced data vectors to cluster the documents. To avoid
normalizations, we chose Euclidean distance (rather than a dot product) to measure
document similarity, and experimented with several versions of the well-known k-
means clustering algorithm (Anderbeg 1973). Document clustering might also be
done with competitive neural networks (Memmi & Meunier 2000).

We encounter here a typical problem in document processing: how to evaluate the
quality of unsupervised clustering. In this case, there are unfortunately no general
objective measures (such as recall and precision in supervised classification) and
results have to be evaluated by humans in the context of a given task.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 211-216

The clusters obtained were very significant indeed, clearly showing the main themes
of the corpus. Clusters corresponded closely the initial categories which had motivated
the user's bookmark collection. Clustering was also much quicker and easier in the
new reduced space than in the original space. In fact, clustering the original vectors
would have been impossible within the strict time limits imposed by our interactive
task, as clustering was performed in real time at the end-user's request.

Dimensionality reduction thus improved computational efficiency and was
semantically relevant at the same time, because the new reduced dimensions represent
the most highly discriminating features accounting for the original textual data.

5. Discussion

As far as we know, this is the first application to textual documents of the GHA
algorithm, which has usually been applied to image compression and coding. We
found that GHA was able to deal with the high-dimension input vectors typical in
document processing, whereas images are often represented by much smaller vectors
obtained by scanning the image (typically 64 inputs for each sample).

Although the size of our document vectors was still low (600 features) compared to
other common document representations (which may number several thousand
features), we are confident that GHA can deal with still higher input dimensions: see
for example another experiment with 4096 inputs, as reported in (Sanger 1989, 7.3).

To sum up, the Generalized Hebbian Algorithm is able to extract successfully the
principal components of high-dimension input vectors, computing only the first
components (representing the major part of input variance), a notable saving in time.
One may then extract principal components in sequence, stopping when output
variance becomes too low.

The adaptive nature of GHA also makes it possible to compute quickly a rough
estimate the first principal components (which can be later refined if necessary). This
is impossible to do with standard PCA methods, which compute all eigenvectors and
perform all the work at once.

GHA is not without drawbacks, however. As with many neural network techniques,
the learning rate must be estimated by trial and error, and for precise results, learning
may be slow. Moreover, errors accumulate from one neuron to the next and accuracy
decreases for subsequent components. The number of useful components should then
be estimated, whereas the proportion of variance extracted by each component is not
given directly by the algorithm.

The use of GHA is therefore recommended only when one will be satisfied with the
first principal components. As they represent most of the input variance, this is
generally a reasonable assumption, but one should be aware of the fact.

Lastly, just like PCA, GHA is a linear method, which can only extract linear
correlations between the original features. To go beyond this limitation, other
methods should be considered, such as SOM nets (Ritter & Kohonen 1989) or
Independent Component Analysis (see Hérault & Jutten 1994).

6. Conclusion

To deal with the high-dimension vectors typical of document processing, we have
used an adaptive neural technique, the Generalized Hebbian Algorithm, to extract the

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 211-216

first principal components of a corpus of text. This algorithm makes it possible to
reduce the dimensionality of very large vectors without computing the covariance
matrix of input data. GHA can also extract a limited number of principal components
so as to save time. We found the technique to work quite fast (at least for a limited
corpus) and to produce good results for document clustering in a real end-user
application. We think the approach should be considered as a good candidate to reduce
the dimensions of document vectors before further processing.

Acknowledgment

The work described here was done during the development by Amoweba of the
Human Links system, a collaborative and distributed search engine designed to mine
expert knowledge on the Web. For more information, see the firm's Web site:

http://www.amoweba.com

References

Anderberg M.R. (1973) Cluster Analysis for Applications, Academic Press.
Deerwester S., Dumais S.T., Furnas G.W., Landauer T.K. & Hashman R. (1990)

Indexing by latent semantic analysis, Journal of the American Society for
Information Science 41 (6), p. 391-407.

Delichère M. (2001) Etat de l'art et implémentation d'algorithmes de recherche et de
classification automatique de documents sur Internet, rapport final EPITA, Paris.

Diamantaras K.I. & Kung S.Y. (1996) Principal Component Neural Networks:
Theory and Applications, John Wiley & Sons.

Fiori S. (2000) An experimental comparison of three PCA neural networks, Neural
Processing Letters 11 (3), p. 209-218.

Hérault J. & Jutten C. (1994) Réseaux Neuronaux et Traitement du Signal, Hermès.
Jolliffe I.T. (1986) Principal Component Analysis, Springer Verlag.
Kohonen T. (1998) Self-organization of very large document collections: state of the

art, Proc. of ICANN'98, London.
Manning C.D. & Schütze H. (1999) Foundations of Statistical Natural Language

Processing, MIT Press.
Memmi D. & Meunier J.G. (2000) Using competitive networks for text mining,

Proc. of Neural Computation 2000, Berlin.
Oja E. (1982) A simplified neuron model as a principal component analyzer, Journal

of Mathematics and Biology 15, p. 267-273.
Ritter H. & Kohonen T. (1989) Self-organizing semantic maps, Biological

Cybernetics 61 (4), p. 241-254.
Salton G. & McGill M. (1983) Introduction to Modern Information Retrieval,

McGraw-Hill.
Sanger T.D. (1989) Optimal unsupervised learning in a single-layer linear feedforward

neural network, Neural Networks 2 (6), p. 459-473.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 211-216

