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Abstract. Throughout the sciences and engineering, there is an urgent
need to study observed high dimensional data and “learn” any nonlin-
ear parametrization which might be underlying the data. Recently, the
ISOMAP procedure was proposed as a new way to recover such hidden
parametrizations of high-dimensional data [3]. But for which kinds of
phenomena can ISOMAP truly recover the underlying structure?

We consider a specific kind of data — families of images generated by ar-
ticulation of an object, in an idealization where the images are functions
on the continuum plane. In these cases, using the ambient L? distance
as a metric for articulated images makes the family a nonlinear mani-
fold. An analog of the ISOMAP procedure is to obtain geodesic distance
between points of the manifold and attempt to realize that distance as a
euclidean metric on a euclidean space.

For a natural renormalization of geodesic distance, we give a set of exam-
ple articulations where the geodesic distance on the manifold is exactly
proportional to the euclidean distance in parameter space, and hence, the
continuum analog of ISOMAP is successful. Examples include: transla-
tions of a disk or of a square, rotations of a square, rescalings of a circle,
modifications of a horizon, and morphings of a disk. However, in the
case where several components of the image articulate separately and
occlusion is possible, characteristics of the data manifold may preclude
recovery of the original parameter space.

1 Introduction

Recently, Tenenbaum et al. [3] proposed the ISOMAP procedure as a general
tool for recovering the unknown parametrization underlying a set of digital
images, {I;}, of faces in various attitudes and articulations. Similar work on
the underlying parameters of families of articulated images can be seen in Nayar
et al. [2], Belhumeur and Kriegman [1]. The general principle of ISOMAP is
to measure distance between images, not using euclidean distance (which is



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 199-204

ignorant of the manifold structures), but according to the shortest path in the
nearest neighbor graph; and to use this graph distance as input to a classical
“principal components” multidimensional scaling procedure.

These published examples naturally raise the question of how “accurate” or
“correct” the ISOMAP procedure is; an obvious way to test this would be to
attempt recovering the parametrization of data manifolds when we know what
seems to be “the natural” parametrization because the data are generated from
an analytical model.

Because of sampling issues (for example, how many model points I; do we
have? Are they densely distributed?) and digitization issues (How finely spaced
are the image pixels?), it is difficult to give simple and precise answers to this
question as originally posed.

Instead, we adopt an abstract “continuum” viewpoint where neither sam-
pling nor digitization can cause problems. We think of an image as a function
I(z) of a continuous variable z € R? and consider articulations of a base im-
age Iy according to a family of transformations (Tp : 8 € ©), where 6 is the
parameter of the transformation and O is the parameter space.

We consider the space of images as a subspace of L?(R?) and let u(6;,65) =
[|To, — Ip,||r2. With this metric, the space M = {I : §# € O} is a continuous
manifold, and generally a nonlinear manifold. M may loosely be called curved
although the manifold is not necessarily differentiable and thus its curvature
may not be well-defined.

We consider the following problem: when does the geodesic distance on the
manifold M reveal the true underlying parametrization? By this we mean:
when is the geodesic distance on the manifold proportional to the euclidean
distance between parameter points? While this may seem unlikely to happen
for general datasets, in the image manifold setting, there are a number of
cases where this is either exactly or approximately true. These cases include:
translation of simple black objects on a white background; rotation of certain
simple black objects on a white background; and morphing of boundaries of
black objects on a white background. Combinations of these cases can also be
successful, given that the articulations remain disjoint.

These examples provide a theoretical ‘imaging’ setting which supports the
principle implicit in ISOMAP — that geodesic distance can reveal the underlying
parametrization of the image manifold.

However, we have also found an important class of image manifolds where
geodesic distance fails: i.e. where the natural euclidean parametrization is
not recovered by the analysis of geodesic distance. Those examples involve
occlusion — several articulating objects which collide and cover each other for
some settings of the articulation.

Mathematical details and derivations are sketched elsewhere (as there is
simply no space), along with many related results. This paper gives in Section 2
a methodology and simple examples where geodesic distance precisely recovers
the natural parametrization, and in Section 3 more complex examples and
exceptions.
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2 Basic Examples

In a longer treatment, we would show that for images with edges (i.e. prac-
tically all interesting ones) the image manifold generates “infinities” when
geodesic distance is calculated. To remedy this, we consider smoothing the
images with window size h, creating a smooth manifold M} and considering
the limit §(6,,6,) of geodesic distance G}, renormalized for each h so that for
two distinct points 8, and 6, G (0,,0,) = 1Vh. We can prove, under sim-
ple regularity conditions on the image and the articulation, that this limiting
process defines a C? Riemannian manifold.

Our fundamental tool will be the following: Suppose we are articulating
an image according to Iy = Tyly, and we want to know the distance between
Iy and Ipy,, for n a small displacement vector. Then if the image Iy is the
indicator of a region R, for small  we have

1/2
5(6,0+ ) ~ Const - [l x ( |ty dp) W

where n(p) = n(p1) is the unit vector normal to the boundary of the region
n(pz)

at any boundary point p € OR. This expression suggests a rough analogy
between an object moving through the plane with a ship moving through water;
the expression above is a measure of how much “water” the boundary has to
“cross,” in a mean-square sense.

If different parts of the boundary undergo different local motions during a
given articulation, then the above formula can be changed to incorporate not
a fixed motion vector 7, but instead a variable motion vector n(p).

2.1 Translation

Consider the situation where the prototype image In = 1¢|5||<1}, @ disk at the
center of the image, is articulated in the following translation family: © = R2,
(TyI)(x) = I(x — 0); Iy = Tylyp. Then the geodesic distance between any two
images parameterized by 6; and 65 is given by

161 — Bl x (/BR(n(p),m?dpf = (161 — 62]]2 x (/OQﬂ(cos¢)2d¢));

where n(p) is again the unit vector normal to the circle at any point p € OR,
the disk boundary. Similarly, 7 is the chosen direction of motion — in the case
of a rigid translation the direction and magnitude of motion is constant around
the boundary for a given articulation. Then evaluating the integral gives a
constant value for any direction of motion n: /7 x (2 +52)% x ||81 — 6|, and
if we choose 17 as a unit vector, we observe that the geodesic distance is, up to
a constant factor, simply Euclidean distance in parameter space. In this case,
renormalized geodesic distance recovers the natural parametrization. We can
check the theoretical calculations against the empirical behavior of ISOMAP.
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Figure 1: (left) Motion and Normal vectors for a disk image; (center) Origi-
nal parameter space of disk centers sampled in a plane; (right) ISOMAP 2D
embedding matched to original coordinates.

We applied the Tenenbaum, De Silva, and Langford algorithm [3] on a set of
100 images, each at resolution 64-by-64 pixels, using the k-nearest-neighbors
option, k=7. As seen in Figure 1, the ISOMAP algorithm recovers the plane
structure of the original parameter space — up to a rigid motion. To visually
compare the “true” and “ISOMAP” solutions, we scale and rotate the ISOMAP
embedding using a Procrustes rotation with optimal scaling. The result agrees
with our theoretical calculations.

2.2 Rotation

As a second example, consider a radial ‘pie wedge’ rotated around its apex at
the origin; this has the form of indicator of a region of points (I cos(w), ! sin(w))
for 0 <l < L and wy < w < wy, with wg = a—6 and w; = b— 6. For points on
the boundary of the wedge where w € {w1, w2}, the normal n(p) is collinear with
the motion vector n(p); while at the boundary points on the circular segment
at the edge of the wedge, the motion vector is tangent to the boundary, hence
(n(p),n(p)) = 0. However, for a given articulation, the length of the path
traveled by any point on the boundary is a function of both the articulation
and of the distance between the point and the center of the rotation. We adapt
the integral in (1) to include a varying path over the boundary of the wedge,
where the distance traveled by a boundary point is a segment of a circle with
radius [. Therefore, the distance between 6; and 65 is % x L3 x |6 — 0y]. In

short, geodesic distance exactly recovers the true parametrization.

3 Composite Examples

3.1 Independent Articulations

Consider a “hand” made up of a unit circle with radial blade fingers of angular
width 2+, each finger centered around a radial line at angle () for i =1, ..., 5.
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Then the image prototype is

5

To = 1{jjz/o<1y + Y Yjlalla< i1} L<a, 00 /| ] la<cos? 2}
=1

We can calculate the distance between any two positions for the ith finger
by a constant function identical to that derived in the previous radial ‘pie
wedge’ example. As long as the #() are restricted such that the fingers may
not overlap, the full hand distances may be calculated by summing the resulting
value over all fingers.

However, for examples where the movements are not independent, such as
an articulated “finger” where the first joint may move the entire finger, but sub-
sequent joints move sequentially smaller segments, the underlying parametriza-
tion may neither be convex (depending on the constraints) nor simple to re-
cover.

3.2 Overlapping Articulations

Consider an image containing two independently articulated disks. If we fix
the center of the first disk, and move the second around, the true underlying
parametrization should be two-dimensional. Let Iy = 1{jjz|l,<1} + 1{|jz—0|]2<1}-
If the disks are forcibly prevented from occluding, then the distance between
two images, Iy, and Ip,, is entirely described by the euclidean distance in
parameter space, just as in the single disk images.

For empirical verification of this theoretical effect, consider the right panel
of Figure 2, which shows the result of applying the ISOMAP algorithm to
100 images containing a fixed and a variable disk. ISOMAP recovers the ring
structure of the non-occluding disk centers in approximately the correct angle
groupings. The left panel shows the original parameter space sample with the
boundary of the fixed second disk marked (points are colored by angle from 0).

Also in the continuum model, consider the case where the parameter space
is not restricted to non-overlapping disks. In this case, the metric structure
becomes radically more complex. Essentially, when the mobile disk is overlap-
ping the fixed central disk, the cost for motion is reduced due to the smaller
amount of exposed boundary. In effect, because the boundary is changing dur-
ing articulation, and the different directions of motion cause different boundary
changes, and other exotica crop up. In fact, the formal embedding dimension
becomes infinite, although we do not have space here to fully document the
effect.

In a discretized version of that situation, the ISOMAP algorithm result for
a 2-dimensional embedding has an appearance very different from the ‘natural
parametrization’. It is an unexpected (but in agreement with the theoretical
results) multiply-spined structure (middle panel of Figure 2). To travel from
one quadrant of the parameter space to another, ISOMAP typically chooses a
path that passes the mobile disk directly through the immobile one.
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Figure 2: (left) Original parameter space sample for two disk images, with
fixed disk outlined; (center) ISOMAP 2D embedding of all disk images given
by original parameter space; (right) ISOMAP 2D embedding for non-occluding
disks only.

4 Discussion

There are a number of additional issues relating to the use of an ISOMAP-type
algorithm in image data. One example, illustrated by the right panel of Figure
2, is the convexity of the underlying parameter space. ISOMAP [3] requires
that the image manifold be geodesically convex. However, in our case we note
that it is sufficient for the parameter space to be convex. For the double disk
images, removing centers where the two disks occlude effectively punches a
hole in the parameter space, and results in a distortion of the relative distances
within points on one side of the missing region compared to distances across the
missing region. In cases where the parameter space is not sampled adequately,
we could expect similar problems to occur at gaps in the data.

Furthermore, actual experimentation with the algorithm reveals discretiza-
tion artifacts which depend on the relative size of objects in the image to the
pixel resolution of the image. For example, rotating a straight line such as the
fan wedge results in systematic deviations at the 45-degree angle which may
be a result of the pixelization.
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