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Abstract

Support Vectors (SV) are a machine learning procedure based on
Vapnik’s Statistical Learning Theory, initially defined for bi-classification
problems. A lot of work is being made from different research areas to
obtain new algorithms for multi-class problems, the more usual task in
real-world problems. A promising extension is to treat ‘all data at once’
into one multi-class SVM by modifying the associated quadratic program-
ming (QP) problem. In this work, a unified architecture is developed to
compare the associated QP problem for different approaches. With the
new framework comparisons between algorithms become easier and it is
a powerful tool to analyze the performance and behaviour of these ap-
proaches.

1 Introduction

Support Vector Machines are learning machines implementing the structural
risk minimization inductive principle to obtain good generalization on a limited
number of learning patterns. This theory was originally developed by Vapnik
on the basis of a separable bipartition problem [7]. New algorithms have been
derived in the past years for categorization problems with no separable data
and regression problems. For the multi-class classification problem, there exists,
roughly speaking, two algorithmic approaches. The first approach proposes to
divide the initial multi-class problem treating K classes into K sub-problems,
each having in consideration a bipartition of one class versus the rest of classes
[7]. Another possibility is to create L = K(K − 1)/2 bipartition dividing each
class from another one [5]. As extensions, it is possible to use error correcting
output codes (ECOC) to select the classes for the bipartition [3], or a ternary
partition based on a mixed formulation of SVMs for classification and regression,
obtaining more robust classification [1].

The second approach is referred to develop an algorithm considering ‘all data
at once’ [2, 4, 8]. Some structures have been constructed independently by using
different initial results. This paper will show that all of these architectures can
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be summarized into a general associated QP problem. This formulation allows
to make easy comparisons between the different approaches, offering a new tool
to study the performance of these algorithms and it is an open structure to
propose other possibilities.

Section 2 will be devoted to formulate the structures to be considered. In
Section 3 the new formulation is naturally introduced and a first result is pre-
sented making a comparison between these architectures. Finally, future work
to be completed and some conclusions are presented.

2 ‘All data at once’ SVMs

Let T = {(xp, yp)}�
p=1 ⊂ X ×Y = X × {θ1, . . . , θK>2} , be the training data set

for a multi-class classification problem. A mapping f (x, ω) = 〈ω, φ (x)〉F + b =
k (ω,x) + b , with the smallest discrepancy with the real system answer must
be chosen, where 〈·, φ (x)〉F , denotes the inner product of φ (x) and another
element in the features space F , being φ : X → F , a non linear mapping
from the original input space to a usually high dimensional space. b = 0 will
be considered, a minimal restriction into the features space. From now on,
learning machines solving this general problem considering ‘all data at once’
will be called KSVMCs (SVM for K-classes Classification).

2.1 A Natural Extension of SVM for Classification

The learning machine presented in this section has been independently proposed
by [8] and [7] among others. Following notation in [8], if output classes are
denoted only by its subscript, Y = {θ1, . . . , θK>2} � Y = {1, . . . ,K} , the usual
QP problem associated to a SVM for Classification can be generalized as

arg min RExt (ω, ξ) =
1
2

K∑
m=1

‖ωm‖2
F + C

�∑
i=1

∑
m�=yi

ξ
(m)
i , (1)

subject to1

〈ωyi
− ωm, φ (xi)〉F ≥ 2 − ξ

(m)
i , (2)

ξ
(m)
i ≥ 0 , i = 1, . . . , � m ∈ Y\yi . (3)

Introducing Lagrange multipliers α
(m)
i , β

(m)
i ≥ 0, if dummy variables2

ξ
(yi)
i , α

(yi)
i , β

(yi)
i = 0, i = 1, . . . , � (4)

are added3, the Wolfe’s dual optimization problem is obtained as follows

1In [7], constraint (2) is replaced by 〈ωyi − ωm, φ (xi)〉F ≥ 1 − ξ
(m)
i .

2In [8] is considered ξ
(yi)
i = 2, despite this assumption add a term 2C� in (1).

3In fact, it is only necessary to keep β
(yi)
i bounded in (5), because ξ

(yi)
i = 0.
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arg min LExt (ω, ξ, α, β) =
1
2

K∑
m=1

‖ωm‖2
F + C

�∑
i=1

K∑
m=1

ξ
(m)
i −

−
�∑

i=1

K∑
m=1

α
(m)
i

[
〈ωyi − ωm, φ (xi)〉F − 2 + ξ

(m)
i

]
−

�∑
i=1

K∑
m=1

β
(m)
i ξ

(m)
i ,

ξ
(m)
i , α

(m)
i , β

(m)
i ≥ 0 , i = 1, . . . , � m ∈ Y\yi .

(5)

By defining c
(n)
i =

{
1 if yi = n

0 if yi �= n
, Ai =

∑K
m=1 α

(m)
i , dual formulation

is established as

WExt (α) = 2
�∑

i=1

Ai+

+
�∑

i=1

�∑
j=1

K∑
m=1

(
−1

2
c
(yi)
j AiAj + α

(m)
i α

(yi)
j − 1

2
α

(m)
i α

(m)
j

)
〈φ (xi) , φ (xj)〉F ,

(6)

subject to 0 ≤ α
(m)
i ≤ C , α

(yi)
i = 0 , i = 1, . . . , � m ∈ Y\yi .

The complete decision function can be written as

f (x) = arg max
m=1,...,K

 ∑
i:yi=m

Aik (xi,x) −
∑

i:yi �=m

α
(m)
i k (xi,x)

 . (7)

2.2 A KSVMC Based on a Uniform Convergence Result

[4] introduces a novel KSVMC structure based on the large numbers strong uni-
form law as an extension of the structural functional risk generalization bound
for multi-class optimal hyperplanes.

Modifying the original notation in [4] with the former subscripts’ notation,
the generalization ability of the optimal hyperplane is improved according to
the authors if the modified optimization problem

arg min RConv (ω, ξ) =
1
2

K−1∑
m=1

K∑
n=m+1

‖ωm − ωn‖2
F + C

�∑
i=1

∑
m�=yi

ξ
(m)
i , (8)

is solved subject to

〈ωyi
− ωm, φ (xi)〉F ≥ 1 − ξ

(m)
i , (9)

ξ
(m)
i ≥ 0 , i = 1, . . . , � m ∈ Y\yi . (10)

Wolfe’s dual optimization problem is obtained by introducing Lagrange mul-
tipliers, so the hyperplane separating classes θr and θs can be expressed as
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h (x) =

1
K

 ∑
i:yi=r

Aik (xi,x) −
∑

i:yi=s

Aik (xi,x) −
�∑

i=1

(
α

(r)
i − α

(s)
i

)
k (xi,x)

 . (11)

2.3 Combining RLP with SVMC

[2] derives an hybrid machine combining a linear programming method, RLP,
for the multi-class problem, k-RLP, and the QP SVM method. The novel multi-
class classification algorithm, M-SVM, builds piecewise-linear discriminants.

In this case, original notation is very different from the subscripts’ notation in
former subsections. Details of this transformation are omitted due to the lack of
space. The associated QP to be solved can be written as arg min RM−SV M (ω, ξ)

=
1
2

[
K∑

m=1

‖ωm‖2
F +

K−1∑
m=1

K∑
n=m+1

‖ωm − ωn‖2
F

]
+ C

�∑
i=1

∑
m�=yi

ξ
(m)
i (12)

subject to (9)–(10), and the complete decision function is identical to (7).

2.4 The Relation with the Bayes Rule

In [6] the SVM paradigm is treated from the statistical point of view and the
Bayes optimal classification rule is applied.

A new notation must be treated, however after some translations the opti-
mization problem for the standard case can de defined as

arg min RBayes (ω, ξ) =
1
2

K∑
m=1

‖ωm‖2
F + C

�∑
i=1

∑
m�=yi

ξ
(m)
i , (13)

subject to

〈ωyi
− ωm, φ (xi)〉F ≥ K

K−1 − ξ
(m)
i , (14)

ξ
(m)
i ≥ 0 , i = 1, . . . , � m ∈ Y\yi . (15)

Treating the primal QP problem in a similar way as (1), dual formulation is

WBayes (α) = K
K−1

�∑
i=1

K∑
m=1

α
(m)
i +

+
�∑

i=1

�∑
j=1

K∑
m=1

(
−1

2
c
(yi)
j AiAj + α

(m)
i α

(yi)
j − 1

2
α

(m)
i α

(m)
j

)
〈φ (xi) , φ (xj)〉F ,

(16)

subject to 0 ≤ α
(m)
i ≤ C , α

(yi)
i = 0 , i = 1, . . . , � m ∈ Y\yi .

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 161-166



3 The New General Formulation

It can be observed that the third method, expressed in a useful notation, has
in its risk functional (12) a conjunction of the former ones, (1) and (8), and it
is a good starting point to develop a more general framework.

A unified multi-class risk functional is defined with the associated QP prob-
lem arg min RUni (ω, ξ)

= A
K∑

m=1

‖ωm‖2
F + B

K−1∑
m=1

K∑
n=m+1

‖ωm − ωn‖2
F + C

�∑
i=1

∑
m�=yi

ξ
(m)
i (17)

subject to

〈ωyi − ωm, φ (xi)〉F ≥ D − ξ
(m)
i , (18)

ξ
(m)
i ≥ 0 , i = 1, . . . , � m ∈ Y\yi . (19)

All of the four former algorithms can be displayed with this new formulation4

RExt (ω, ξ) =RUni (ω, ξ)A= 1
2 ,B=0,D=2

RConv (ω, ξ) =RUni (ω, ξ)A=0,B= 1
2 ,D=1

RM−SV M (ω, ξ) =RUni (ω, ξ)A=B= 1
2 ,D=1

RBayes (ω, ξ) =RUni (ω, ξ)
A= 1

2 ,B=0,D=
K

K−1

(20)

and constraints are similar in all the cases.

3.1 A First Theoretical Result

Comparisons between algorithms are easier with the new framework. So, the
Wolfe’s dual optimization problem for RUni (ω, ξ)A= 1

2 ,B=0,D=1 is (6), while the
Wolfe’s dual for RUni (ω, ξ)A=0,B= 1

2 ,D=1 is W (α) =

1
2K

�∑
i,j=1

K∑
m=1

[
2α

(m)
i α

(yi)
j − c

(yi)
j AiAj − α

(m)
i α

(m)
j

]
· k (xi,xj) −

�∑
i=1

Ai , (21)

subject to 0 ≤ α
(m)
i ≤ C, α

(yi)
i = 0 i = 1, . . . , � m ∈ Y\yi .

By observing the dual formulation in (6) and (21), it can be conclude that
the main difference is the term 1

K in the second dual risk formulation, although
the restrictions are equivalent.

This new tool makes the analysis of the performance and behaviour of these
approaches easier. An example illustrating this relation follows: if the very
usual gaussian kernel

k (xi,x) = exp

(
−‖x − xi‖2

σ2

)
, (22)

4RV ap (ω, ξ) = RUni (ω, ξ)A= 1
2 ,B=0,D=1
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is choosen in (6), being the width σ, it could be possible to obtain the equivalence
between (6) and (21) if an artificial width σ̃ is defined in the kernel of (21) in
the form

σ̃2 = σ2 · ‖x − xi‖2

‖x − xi‖2 − σ2 lnK
> σ2 . (23)

This observation leads to conclude that the solutions for the second case
have a more generalized behaviour than the previous one when gaussian kernels
are used because the shape of the gaussian functions are wider.

4 Conclusions and Further Work

Several extensions have been recently derived to deal multi-category problems by
using ‘all data at once’ SVMs. A unified algorithmic framework has been created
for these approaches extending the bi-class SVM learning machine for multi-
class purposes. With the new environment, we easily obtain a first theoretical
result about generalization using gaussian kernels in an easy form, showing that
this is a powerful tool to drive this extension. Work in this open research area
and relations with other extensions and studies from different authors will be
continued.
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