
Probabilistic Derivation and Multiple Canonical

Correlation Analysis

Pei Ling Lai
Department of Computer Science,

York University,
UK.

email: pllai@cs.york.ac.uk

Abstract. We review a new method of performing Canonical Correla-
tion Analysis (CCA) with Artificial Neural Networks. We have previously
[5, 4] compared its capabilities with standard statistical methods on sim-
ple data sets where the maximum correlations are given by linear filters.
In this paper, we extend the method by implementing a very precise set
of constraints which allow multiple correlations to be found at once. We
demonstrate the network’s capabilities on the standard random dot stere-
ogram data set. We also re-derive the learning rules from a probabilistic
perspective and then by use of a specific prior on the weights, simplify
the algorithm. We demonstrate its capabilities on a standard problem
[2]which is an abstraction of the Random Dot Stereogram matching prob-
lem and show how a second layer network using Factor Analysis can be
used to combine the results of the CCA network to obtain higher order
information.

1 Introduction

Canonical Correlation Analysis(CCA) is a statistical technique used when we
have two data sets which we believe have some underlying correlation. Consider
two sets of input data; x1 and x2. Then in classical CCA, we attempt to find
that linear combination of the variables which gave us maximum correlation
between the combinations. Let

y1 = w1x1 = Σjw1jx1j and y2 = w2x2 = Σjw2jx2j

where we have used w2j as the jth element of the parameter vector w2 etc.
Then we wish to find those values of w1 and w2 which maximize the correlation
between y1 and y2. Whereas Principal Components Analysis, Factor Analysis
or Exploratory Projection Pursuit deal with the inter-relationships within a set
of variables, CCA deals with the relationship between two sets of variables.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

In this paper, we review a neural method of finding canonical correlations
in Section 2 and extend the method to find multiple correlation simultaneously
even where these correlations have the same magnitude in Section 3. In Section
4, we rederive from a probabilistic perspective a neural implementation of CCA
which adaptively learns the optimal weights to maximize correlations between
the data sets and then use the new derivation to derive a nonlinear extension
of CCA. We then illustrate the method on the abstraction of the Random Dot
Stereogram matching problem popularized by Becker [2].

2 The Canonical Correlation Analysis Network

We wish to maximize the correlation E(y1y2) where E() denotes the expec-
tation which will be taken over the joint distribution of x1 and x2. We may
regard this problem as that of maximizing the function g1(w1|w2) = E(y1y2)
which is defined to be a function of the weights, w1 given the other set of
parameters, w2. This is an unconstrained maximization problem which has
no finite solution and so we must constrain the maximization. Typically in
CCA, we add the constraint the E(y2

1 = 1) and similarly with y2
2 when we

maximize g2(w2|w1). Using the method of Lagrange multipliers, this yields
the constrained optimization function:

J = E{(y1y2) +
1
2
λ1(1 − y2

1) +
1
2
λ2(1 − y2

2)} (1)

We use gradient ascent on the instantaneous version of this function with
respect to both w1 and w2 and the Lagrange multipliers, λ1 and λ2. By
changing the Lagrange multipliers in proportion to the derivates of J we are
changing the relative strength of the constraint compared to the function we
are optimizing; this allows to smoothly maximize that function in the region
in which we are satisfying the constraint. Noting that

∂g1(w1|w2)
∂w1

=
∂(y1y2)

∂w1
=

∂(w1x1y2)
∂w1

= x1y2

these yield respectively
∂J1

∂w1
= x1y2 − λ1y1x1 = x1(y2 − λ1y1)

∂J1

∂λ1
∝ (1 − y2

1)

We therefore have the joint learning rules

∆w1 = ηx1(y2 − λ1y1) λ1 = η0(1 − y2
1)

∆w2 = ηx2(y1 − λ2y2) λ2 = η0(1 − y2
2)

We have previously [5] illustrated this networks’s capabilities on both real
and artificial data sets.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 2 3
−0.2

0

0.2

0.4

0.6

1 2 3
−0.2

0

0.2

0.4

0.6

W1 W2

Lambda 1 Lambda 2

(a)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1 2 3
0

0.5

1

1.5

2

2.5

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

W1
W2

Lambda 1

(b)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4
0

0.5

1

1.5

1 2 3 4
−30

−25

−20

−15

−10

−5

0

5

1 2 3 4
−15

−10

−5

0

5

(c)

Figure 1: (a)The top row shows the weights of W1 and W2. (The first column
in each of the six blocks is the weight into the first output neuron etc. The
weights span the three dimensional subspace of the first three correlations. The
bottom row shows the Λ1 and Λ2 matrices which are almost diagonal. (b)The
top row shows the weights of W1 and W2. They find the actual first three
correlations. The bottom row shows the Λ1 and Λ2 matrices. (c)The top pair
of diagrams show w1 and w2 which show that 1 pair have learned the right
shift while two other pairs have learned the left shift. The bottom diagrams
show the Λ matrices which explains why the fourth pair of neurons is inactive.

3 Many Correlations

However the preceding method only enables us to find one correlation in a data
set. We can find more by deflationary methods, however a better method is to
create an objective function which contains the necessary criteria for finding
more than one correlation. One obvious basis for this would be to insist that
yiyT

i = I where I is the m*m identity matrix, with yi, i = 1, 2 the vector of
first (resp. second) outputs.

Thus the criterion becomes maximize

J = E{(yT
1 y2) + λ1(y1yT

1 − I) + λ2(y2yT
2 − I)}

with λi, i = 1, 2 now a matrix of Lagrange multipliers. This give us the learning
rules

∆W1 = ηx1(y2 − λ1y1)T ∆λ1 = η0(y1yT
1 − I) where y1 = WT

1 x1

with W1 the m*n matrix of weights connecting x1 to y1. Similarly with W2, λ2.
With this formulation we find a rotation of the canonical correlation. e.g. with
artificial data in which x1 and x2 are both 6 dimensional data vectors each of
whose elements are randomly drawn from the zero mean Gaussian distribution
N(0, 1) before an additional 3 samples are drawn from the same distribution
and added to the first three elements of x1 and x2, we find the results in Figure
1a. The fact that there are correlation in the first three elements has clearly
been found and we see that there is only a very small magnitude in the other
three positions of W1 and W2.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

However the above network only finds the correlations spread out over the
subspace spanned by the major correlations. We are constraining the expected
value of y1yT

1 = I which means that

E(WT
1 x1xT

1 W1) = I i.e. WT
1 Σ1W1 = I or WT

1 W1 = I if Σ1 = I

where we have used Σ1 as the covariance matrix of the input vector x1. Now
for our artificial data set this last condition holds and so any orthogonal matrix
satisfies the constraints. The λ1 matrix learns the diagonal elements to ensure
the E(y2

1i) = 1 but there is no interaction between the elements in x1 so that
we do not ensure that E(y1iy1j) = 0, i �= j since (Λ1)ij = 0. We have chosen in
Figure 1b an example of the Λ matrix in which the off-diagonal elements have
grown somewhat larger than usual (though still very much smaller than the
diagonal elements) to illustrate the small interaction which there is between
the first two correlations.

A recent trick [3] to turn a PCA network into a Factor Analysis network
has been to insist that the weights remain positive. Recognizing that the
correlations we wish to find are positive, we may insist that the weights remain
positive i.e. should the weight change mean that the weights become negative,
we simply set that weight to 0. It subsequently has the opportunity to grow
positive again. This is not too restrictive a practice since we may insist that
another output neuron has negative weights if we suspect an anticorrelation
between x1 and x2. This change is also motivated by Dale’s law which states
that a neuron may be inhibitory or excitatory but may not switch from one
effect to the other. With this additional constraint we have the results shown
in Figure 1b: the actual correlation filers have been found and we see that the
off-diagonal elements of λi, i = 1, 2 are very much larger.

3.1 Random Dot Stereograms

With our previous single neuron constraint, we required to enforce a compe-
tition between pairs of outputs (one in y1 and one in y2) to ensure that one
pair learned the left shift while another learned the right shift. This added ad-
ditional complexity to the model. With the above network such a competition
is not necessary: we see in Figure 1c that two pairs of neurons have learned a
left shift while one has learned a right shift. This experiment was done with
the yi vectors being 4-dimensional. We see that one pair of output neurons’
weights have not grown and the reason for this is seen in the large magnitude
of the Lagrange values for that output.

4 A Probabilistic Perspective

We may also derive these learning rules from a probabilistic perspective. Let
us assume that we have discovered the best linear combination of the elements
of x2 which will match with greatest correlation a linear combination of x1.
Then y2 has the target distribution which we wish y1 to match as closely as

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

possible. Now if the distributions match exactly, there is a linear relationship
between y1 and y2 i.e.

y2 = λ1y1 + θ

For simplicity in the following, we will take θ = 0. Now let us assume that the
actual value of y2 is gaussian distributed with mean proportional to y1. Then
the probability of the output y2 given the model and its parameters is

P (y2|w1,x1,H) =
1

Zn
exp{−β(λ1y1 − y2)2)}

where Zn is a normalising factor, H is the current model and β determines
the spread of the distribution. We wish to find the most probable value of y2.
Then we may define J1 to be the negative log of this probability to give an
objective function which we can minimise with respect to the parameters w1

to get the learning rules

∆w1 ∝ − ∂J1

∂w1
= βx1(y2 − λ1y1)λ1 (2)

The learning rule for w1 is identical to that above with βλ1 = η. This per-
spective also allows us to perform error descent on the unknown parameter λ1

(ignoring for the moment difficulties with joint optimisations) or we may set
λ1 to a particular value determined by our prior beliefs about the data set, x1

and x2 and the parameters. Now we may consider the more general situation
where

y1 = f1(w1x1)

for some nonlinear function f1(). Then

∆w1 = − ∂J1

∂w1
= βf ′

1x1(y2 − λ1y1)λ1 (3)

where f ′
1 is the derivative of f1(t) with respect to t.

Let us now consider our prior beliefs about the weights w1. It is our prior
belief that we require a non-zero value for y1; in other words, we wish to ensure
that our learning algorithm does not find values of w1 and w2 that give us the
trivial solution y1 = y2 = 0. For reasons which will become obvious later, we
will use the prior

P (w1|x1,H) =
1

Zw
exp(

1
2
γy2

1) (4)

where Zw is a normalising constant. We may equally express this as a prior
on y1 since the relationship between w1 and y1 is deterministic. Note that this
implies that our prior belief in the joint magnitude of all weights into output
y1 is an exponential distribution. Now 1

Zw
exp(1

2γy2
1) = 1

Zw
exp(1

2γf2
1 (w1x1)))

and so with binary x1, we are at or close to the corners of a hypercube. Since

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

most of the volume of a high dimensional hypercube is near the corners, this
prior displays our belief that some weights will have large values. Then the
joint probability of weights and data can be written

P (y2,w1|x1,H) = P (y2|w1,x1,H).P (w1|x1,H)

and so taking

J2 = − log(P (y2|w1,x1,H).P (w1|x1,H))

we have

∆w1 = y2x1βλ1f
′
1 − x1y1(βλ2

1 − γ)f ′
1

If we use y1 = tanh(w1x1)

∆w1 = y2x1βλ1(1 − y2
1) − x1y1(1 − y2

1)(βλ2
1 − γ)

We now set γ = βλ2
1 to get a much simplified equation,

∆w1 = y2x1βλ1(1 − y2
1)

which we use in the remainder of this paper.
The prior above is an improper prior (

∫
P (w1|x1,H) = ∞) but this prior

may be made proper if we bound the region over which the weights have non-
zero prior probability,

P (w1|x1,H) =
1

Zw
exp(

1
2
γy2

1) (5)

for |w1i| < a,∀i and P (w1|x1) = 0 otherwise. Note that the value of a must be
sufficiently large that the non-zero part of the posterior distribution lies within
the prior’s support. If a is fixed, the width of the posterior of y2 is proportional
to the width of the least probable region round the origin for the prior on y1.

However we see that this method will not be successful in the linear case
since the probability density function increases so strongly towards a that all
weights will tend to a uniform vector all of whose elements are equal to a.

Finally, we note that using y2 as the target density in this way is equivalent
to the M step in the EM algorithm, while the adaption of the weights, w2 is
equivalent to the E step. From the perspective of the y2 neuron, these are
reversed.

4.1 A Hierarchical Network

4.1.1 Random Dot Stereograms

Becker [2] has developed a data set which is an abstraction of random dot
stereograms.

Each input vector consists of a one dimensional random strip which corre-
sponds to the left image and a shifted version of this which corresponds to the

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

w1 0.07 -6.49 -0.003 7.02
w2 -6.19 -0.07 5.34 0.07
w3 0.14 15.44 0.25 0.11
w4 0.09 -0.13 12.93 0.21

Table 1: Examplar converged weights: w1 and w2 have identified the left shift
and w3 and w4 have identified the right shift.

right image. The left image has components drawn with equal probability from
the -1, 1 and the the right image is generated by choosing a randomly chosen
global shift - either one pixel left or one pixel right - and applying it to the
left image. Because the shifts are chosen with equal probability, there are two
equal sets of correlations corresponding to left-shift and right-shift. In order to
find these, we require two pairs of weight (w1,w2) and (w3,w4). The learning
rules for w3,w4 are analagous to those for w1, w2; at each presentation of a
sample of input data, a simple competition between the products y1y2 and
y3y4 determine which weights will learn on the current input samples. Using a
learning rate of 0.1 and 100 000 iterations, the weights converge to the vectors
show in Table 1. The table clearly illustrates that these high correlations come
from one pair learning the shift-left transformation while the other learns the
shift-right. It should be noted at this point that Becker [1] only uses a subset of
12 of the 16 possible patterns. She removed those which are ambiguous (such
as (-1,1,-1,1)) whereas we are drawing our data from all possible patterns. We
are able to reliably find both correlations with a very simple network. However
we require a second layer if we are to unambiguously identify the concepts of
”left” and ”right”.

4.1.2 Factor Analysis

Factor Analysis is a statistical technique which attempts to explain/compress
a data set into a small number of dimensions. Let us have an N -dimensional
input vector at time, y, and an M -dimensional output vector, z, with vij being
the weight linking input j to output i and let η be the learning rate. Then the
operation of the network is given by

zi =
N∑

i=1

vijyj , zj(t + 1) = yj(t) −
M∑

i=1

vijzi, ∆vij = ηyj(t + 1)zi (6)

It is well known that the above rules perform a Principal Component Analysis of
the input data. It has recently been shown [3] that the addition of a nonlinearity
at the outputs such as

ai =
∑

vijyj , zi = 0.3log(1 + exp(ai − 3)/0.3) (7)

gives a network which identifies the independent factors of the input data.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

v1 0.91 0 0.91 0 0.91 0
v2 0.91 0 0.91 0 0.91 0
v3 0 0.91 0 0.91 0 0.91
v4 0 0.91 0 0.91 0 0.91

Table 2: The converged weights of the Factor Analysis network. The weights
v1 and v2 give output z1, while v3 and v4 give output z2, z1 identifies left-shift
while z2 identifies right-shift.

We therefore train a CCA network with 12 pairs of output neurons each
of which competes in pairs to get results similar to those of table 1. We then
train a Factor Analysis Network on the output of the CCA network. In table2,
we show the converged weights of a network in which we differentiate between
the two sets of inputs from the CCA network.

ai =
∑

v1ijy1j +
∑

v2ijy2j

The results showed conclusively that neuron z1 identified the left shift while
neuron z2 identified the right shift.

5 Conclusion

We have previously [5] derived an artificial neural network as an implemen-
tation of the standard statistical technique of canonical correlation analysis
and compared its capability with standard statistics methods on both real and
artificial data.

In this paper, we have extended the network by implementing stronger
constraints on the outputs and by using a constraint on the weight learning.
we have also derived the same algorithm from a maximal likelihood criterion
and shown that by using a specific prior on the network’s weights, we can
derive a simplified algorithm. We have shown the performance of this simpli-
fied algorithm on a standard problem which is an abstraction method is more
biologically plausible than that use in [2] and is also far more effective and
computationally simple.

References
[1] S. Becker. An Information-theoretic Unsupervised Learning Algorithm for Neural Net-

works. PhD thesis, Gradute Department of Computer Science, University of Toronto,
1992.

[2] S. Becker. Mutual information maximization: Models of cortical self-orgainization. Net-
work:Computation in Neural Systems, 7:7–31, 1996.

[3] D. Charles and C. Fyfe. Modelling multiple cause structure using rectification constraints.
Network: Computation in Neural Systems, 1998.

[4] P. L. Lai and C. Fyfe. Canonical correlation analysis using artificial neural networks. In
European Symposium on Artificial Neural Networks, ESANN98, 1998.

[5] P. L. Lai and C. Fyfe. A neural network implementation of canonical correlation analysis.
Neural Networks, 12(10):1391–1397, Dec. 1999.

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 445-452

