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Abstract: A non-linear version of the multivariate statistical
technique of canonical correlation analysis (CCA) is proposed
through the integration of a radial basis function (RBF) network.
The advantage of the RBF network is that the solution of linear
CCA can be used to train the network and hence the training effort
is minimal. Also the canonical variables can be extracted
simultaneously. It is shown that the proposed technique can be
used to extract non-linear structures inherent within a data set.

1. Introduction

Over the past decade, a number of techniques have been proposed for the extraction
of non-linear features inherent within process data including the multivariate
statistical technique of principal component analysis [1-4].  More recently a non-
linear variant of Canonical Correlation Analysis (CCA) has been proposed [5]
through the integration of a Multi-Layer Perceptron (MLP) network. A drawback of
this approach is that the optimisation problem is non-linear and thus suffers from the
potential problem of becoming trapped within a local minimum. Hsieh [5] addressed
this issue by training an ensemble of neural networks.  Although not a serious
limitation of the methodology, it does require major training effort. The other
limitation is that when using a MLP network, the canonical variables cannot be
extracted simultaneously. This has two repercussions.  First the number of MLP
networks to be trained (hence the training effort) increases with the number of
canonical variables and secondly since the MLP networks are trained on the residuals,
the extraction of subsequent canonical variables becomes difficult because of the
reduction in signal to noise ratio. In this paper an alternative method of implementing
non-linear CCA using a Radial Basis Function (RBF) network is proposed.

2. Linear Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a multivariate statistical technique that
identifies a linear relationship between two sets of variables x Rm∈  and y R n∈ .

Linear CCA seeks to find vectors a Rm∈  and b R n∈  such that the linear
combinations:

u =1 a xT  and v1 = b yT (1)
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have maximum correlation. The vectors a and b  are the canonical correlation vectors
and u1 and v1 are the canonical variables. The above problem is solved as follows.

Let Σ xx  and Σ yy  be the covariance matrices of x  and y  respectively and Σ xy  be the

cross covariance matrix between x and y .  Let matrix , K , be defined as:

K xx= −Σ 1 2/ Σ xy Σ yy
−1/2 (2)

If k is the rank of matrix K , then by singular value decomposition, K  can be
decomposed as:

T), . . ,,(  ),,( k21k21 D. . .K = (3)

where α i and β i  are the eigenvectors of the matrices KK T  and K KT  respectively

and D  is a block diagonal matrix comprising the square root of the k  non-zero
eigenvalues. Letting:

a xxi i = −Σ 1 2/ α   and  b yyi i = −Σ 1 2/ β  for i 1 ,  2. . . k= (4)

then a i  and bi  are the (k) canonical vectors.

3. Non Linear CCA using a RBF Network

Non-linear Canonical Correlation Analysis (CCA) is similar to linear CCA except that
the linear transformation applied to the variables, x  and y , is replaced by a non-
linear transformation. In this paper a RBF network replaces the linear transformation.
Non-linear CCA is performed in two stages.  First the variables, x  and y , are
projected from the higher dimensional space down onto a lower dimensional space
and then the latent variables are transformed back to the original variables. The
second step is termed self-consistency [6].

3.1 Mapping from Original Data Space to the Canonical Variables

The mapping of x and y  to canonical variables u1  and v1  is from R Rm → k  and

R Rn → k  respectively. For simplicity, k , the number of canonical variables, is taken
to be unity. The situation where k  is greater than unity is a straightforward extension
of the described methodology.  Given the centers ixc , yic  and the widths σ xi , σ yi  of

the radial basis functions for the two mappings, the canonical variables u1 and v1 can

be defined as:
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∑ y y( )  = w gy

T (5)

where f = [f , f  .  .  .  f ]1 2 p
T  and g = [g ,g  .  .  .  g ]1 2 q

T  are RBF vectors and

wx x x x= [ ]w  ,  w ,  .  .  .  w1 2 p
T  and wy y y y= [ ]w , w  ,  .  .  .w1 2 q

T  are the weight vectors for

the mapping from x  to u1 and y  to v1  respectively. Non-linear CCA then reduces to

that of finding the weight vectors wx  and wy  such that there is maximum correlation

between u1  and v1 . This problem is similar to the linear case except that the vectors

x  and y  are replaced by f and g  respectively. If Axx  and Ayy  denote the

covariance matrices of the radial basis functions f and g  respectively and Axy  is the

cross covariance matrix, then similar to equations (2) and (3):

M A Axx xy yy= − −1 2 1 2/ /  A (6)

can be decomposed using singular value decomposition:

M p p p [q q q= [ , ] , , ]1 2 2 .  .  .     .  .  .  k k 1 k
TΛ (7)

The weight vectors wx  and wy  are calculated as follows:

w A  px xx= −1 2/
1

(8)

w A qy yy= −1 2/
1

(9)

In the case where more than one canonical variable is required, the weight vectors for
the network for transforming the variables x and y  into successive canonical
variables can be obtained using vectors p i  and q i  for i 2,3 .  .  k=  in equations (8) and

(9) respectively. Thus the canonical variables can be obtained simultaneously without
solving any non-linear optimization problem.  The basis function for the mapping
from x  to u1  is chosen such that y is predicted from x , that is:

( )∑ +=
=

p

i
yii f

1
εγ xy

where y  is the prediction error and iγ  is a coefficient . Similarly the basis functions

for the mapping from y  to v1  are selected so that x  is predicted from y  with

minimum error.

There exist many techniques to adjust the centers and widths xiσ and yiσ  of the

radial basis functions [7-8].  Here the centres are determined by fitting a Gaussian
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mixture model with circular covariances using the EM algorithm with the widths set
equal to the maximum inner centre distance.

3.2 Mapping from Canonical Variables to Original Data Space

The scores ui and vi  calculated in the first stage of the algorithm should be a good

approximation of the original vectors, x  and y . The next stage is to apply an inverse
transformation, again using a RBF network. The parameters of the mapping from the
scores ui  to x and iv  to y  are adjusted such that the sum of squared prediction

errors are minimised:

E i i
i 1

N 2

x x x= −
=
∑ �  and  E i i

i 1

N 2

y y y= −
=
∑ �

(10)

The centres and the widths are calculated as described in section 3.1 and the weights
are determined by least squares. To avoid overfitting, a regularization term is added to
the sum of squares of the errors while finding the parameters of the network.

4. Test Example

The proposed approach to non-linear CCA is applied to the test problem given in [5].
The variables x and y are three dimensional:

[ ]′+′+′+= 332211 x x,x x,xxx  and [ ]′+′+′+= 332211 yy, yy ,yyy ,

2
1  t0.3-tx = , 2

2 0.3t+tx = , 2
3 tx = ; (11)

3
1 ty =  , 3

2 0.3t+t- y = , 2
3 0.3t+ ty = ; (12)

2
1 0.3s-s- x =′ , 3

2 0.3s-s x =′ ; 4
3 s- x =′ ; (13)

sech(4s)y1 =′  , 2
2 0.3ssy +=′ , 2

3 0.3ssy −=′ ; (14)

where t and s  are independent and uniformly distributed over [ 1 ,  1]− . The plots of
mode 1 and 2 in the x  and y - space is shown in Fig. 1.

The data set was generated by adjusting the variance of the canonical variable as one
third of the first canonical variable. Gaussian noise with standard deviation equal to
10% of the signal standard deviation was added. The variables were then auto-scaled
and non-linear CCA was applied. The number of neurons in the projection stage were
optimised through cross-validation to reproduce the vectors x  and y .  For the test
problem, the number of neurons was fifteen. Two canonical variables explained
approximately 95% of the variance in X and Y.  In the inverse mapping, from
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canonical variables to original variables, the number of neurons was twelve.  The
plots of mode 1and mode 2 in x  and y space extracted from the data are shown in
Figs. 2 and 3 respectively.  Comparing Fig. 1 with Figs. 2 and 3, the proposed
technique is able to extract Mode 1 and Mode 2 reasonably well from the data.
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Fig. 1. Modes 1 and 2 in x -space (LHS) and y -space (RHS).  (‘……’ - data; ‘o’ – Mode 1;
‘_____’ - Mode 2)

Fig. 2. Extraction of Mode 1 in x -space (LHS) and y -space (RHS). (‘…’ - Data; ‘o’ –
Extracted Mode 1; ‘_____’ - Actual Mode 1).

Fig. 3. Extraction of Mode 2 in x -space (LHS) and y -space (RHS). (‘…’ - Data; ‘o’ –
Extracted Mode 2; ‘_____’ - Actual Mode 2).
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The correlation between u1  and v1  is 0.9937 and between u2  and v2  is 0.9844. The

MSE of x  after the extraction of the first canonical variable is 0.8715 and for y  is
0.6930. After extraction of both canonical variables, the MSE in x  and y  are 0.0916
and 0.1509 respectively. After the non-linear CCA model is built, the model is used to
predict y  from the given values of x . The average MSE for the prediction of y  for
100 new data sets, given x  is 0.2029. These results are comparable with those
reported in [5].

6. Conclusions

In this paper non-linear CCA using a radial basis function network has been proposed.
For this method the training effort is less because of the near linear nature of the
problem. Also the canonical variables can be extracted simultaneously. However, the
issue of how many canonical variables to be retained to build the model remains
unresolved. The model has been tested on synthetic data. The aim of the methodology
is to use it for fault detection and diagnosis.
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