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Abstract. In previous papers we have introduced the Mean Squared
Sensitivity (MSS) as an approximation of the performance degradation of
a MLP or a RBFN affected by perturbations in different parameters. In
the present paper, we consider that the inputs of a RBF network are af-
fected by noise, using a multiplicative model for such perturbations. We
have obtained the corresponding analytical expression for MSS and have
validated it experimentally. MSS is proposed as a quantitative measure-
ment for evaluating the noise immunity of a RBFN configuration against
multiplicative noise.

1 Introduction

Radial Basis Function Networks (RBFNs) [1] are neural paradigms that are
currently receiving a great deal of interest and which can be considered univer-
sal approximators [2]. Nevertheless, the algorithms used to train them provide
solutions that correspond to local optima in the space of parameter configura-
tions [2]. In this way, for a fixed structure of the network, a modification in
the constraints used during training would produce different configurations for
the RBFN (different values of weights, centres and radii). These different con-
figurations may present a similar response with respect to learning, i.e., they
may present a similar Mean Squared Error (MSE). However, their performance
with respect to noise immunity or generalization ability may present large dif-
ferences. Thus, two different configurations of RBFNs that solve the same
problem may present a similar Mean Squared Error (MSE) computed over the
same set of input patterns, but if these patterns are altered by noise, the per-
formance of the two configurations may be degraded to a different degree. The
training algorithms are based on searching local minima of the mean squared
error with respect to the parameters of the network, but there exist many pos-
sibilities (as many as there are local minima) and some of these minima are
flatter than others [3].

In [4] a suitable approximation of the MSE degradation of a Multilayer
Perceptron (MLP) subject to perturbations, called Mean Squared Sensitivity



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 237-244

(MSS), was obtained. MSS measures the MSE degradation of the MLP in
the presence of deviations and its expression can be particularized to consider
different types of weight or input perturbations. The same methodology was
used in [5] to study the case of RBFNs subject to additive input deviations. In
this work it is considered that the input deviations that affect a RBFN have
a multiplicative nature. We obtain the expression of MSS for such kind of
deviations and show the validity of the approximation. Therefore, we propose
the use of MSS as a measure of performance degradation of a RBFN affected
by multiplicative input noise, providing a useful criterion to select between
different RBFN configurations, which is interesting, for example, when the
inputs of the network come from analogue sensors.

The paper is organized as follows: in Section 2, the particular expression
of statistical sensitivity to multiplicative perturbations is derived. The rela-
tionship between statistical sensitivity and MSE degradation is presented in
Section 3, where MSS is defined. Section 4 shows the experimental results that
enable us to demonstrate the validity of the expressions obtained and, finally,
Section 5 draws some conclusions.

2 The statistical sensitivity of a RBF network
to multiplicative deviations

Without loss of generality, let us consider a RBF network consisting of n inputs,
a single output, and m neurons in the hidden layer. The output of this network
is then computed as the averaged sum of the outputs of the m neurons, where
each neuron is a radial function of the n inputs to the network:
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where z (k=1,...,n) are the inputs to the network, and ¢;, and r; are the
centres and radius of the RBF associated with neuron i, respectively.

If the inputs presented to the RBF are perturbed by noise, then the output
y of the network is changed with respect to its nominal output. The statistical
sensitivity, S, enables us to estimate in a quantitative way the degradation of
the expected output of the RBF network when the values of the inputs change
by a given amount. Statistical sensitivity is defined in [7] by the following
expression:

S = 1im Y0 (29) 2)

o—0 g
where o represents the standard deviation of the changes in the inputs, and
var(Ay) is the variance of the deviation in the output (with respect to the
output in the absence of perturbations) due to these changes, which can be
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computed as: var(Ay) = E[(Ay)?] — E[Ay], with E[-] being the expected
value of [].

If the deviations considered are small enough, then the corresponding devi-
ation in the output of the network can be approximated as:

Ay~ Z —Aa:k (3)

To compute expression (2), we assume a multiplicative model of input devia-
tions that satisfies:

(a). E[Az] =0

(b) E[(A:L’kA:L’l)] = Uzmkmlékl
where d; is the Kronecker delta. This perturbation model implies that each
input zj, is randomly modified in a quantity proportional to its nominal value.
It is assumed that these perturbations follow a normal distribution with aver-
age equal to zero and standard deviation equal to . Moreover, perturbations
of different inputs are assumed not to be statistically correlated.

Proposition 1: if E[Az;] =0 Vk then E[Ay] = 0.

Proof 1:
R (zw ) A
= ZZwZ Aa:k = QZwZ Z (cir — z1) E[Amg]
k=1i=1 "i
= 0 (4)

O

Proposition 2: the statistical sensitivity to multiplicative input perturbations
of a RBF network can be expressed as:

S=2 Z (xkzw;;l)l (cik — wk)) (5)

k=1 i=1 !
Proof 2
9 T w; B
E[Ay?] = 2; 2 kl(cik—mk)m:k>
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Substituting (6) in (2), Proposition 2 is proved.

3 The Mean Squared Sensitivity

It is usual to measure the learning performance of a RBF network using the
Mean Squared Error (MSE). This error measurement is computed by the sum
of a set of input patterns whose desired output is known, and its expression is
the following;:

NP NP
MSE = Nip;dp) - ﬁ;d(m ) (7)

where N, is the number of input patterns considered, and d(p) and y(p) are
the desired and obtained outputs for the input pattern p, respectively.

If the inputs of the network suffer any deviation, the nominal output is
altered, as is the expected M SE. By developing expression (7) with a Taylor
expansion near the nominal M SE found after training, M SEy, it is obtained
that:

Ny, Np
MSE' = MSEy— 33 (d(p) ~ y)Au(r) + 3= (Au)P +0  (8)

Now, if the expected value of M SE’ is computed, taking into account the
perturbation model adopted that E[Ay] = 0, and that from expressions (2)
and (3) we obtain E[(Ay)?] ~ 0252, the following expression is deduced:

EMSE'] = M5E0+— (S(p))2 9)
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Table 1: M SEy and M SS obtained after training

Problem MSE, MSS
Mackey-Glass | 6.65 10> | 1.095
fs function 8.4110~* | 5.126

By analogy with the definition of M SE, we define ”Mean Squared Sensitivity

"(MSS) as:
LN

MSS = Q—NP;(S@))? (10)

MSS is evaluated from the statistical sensitivities for a set of input pat-
terns, as expression (10) shows and from the nominal values of the network
parameters. By combining expressions (9) and (10), the expected degradation
of the MSE, E[MSE'] can be expressed in a simplified way as:

E[MSE'l = MSEy + 0*>MSS (11)

Thus, as MSEy and M SS can be directly computed after training, it is
possible to predict the degradation of M SE when the inputs of the network are
deviated from their nominal values into a determinate range. Moreover, as can
be deduced from (11), a lower value of M SS implies a lower degradation value of
M SE; thus, we propose using M SS computed using (5) as a suitable measure
of the noise immunity of RBF networks against multiplicative deviations.

4 Results

In order to validate the expressions presented, we compared the results exper-
imentally obtained for E[MSE'] when the inputs of the network are affected
by multiplicative deviations with the predicted value obtained by using (11).

Two RBFNs were considered: a predictor of the Mackey-Glass temporal
series[8] and an approximator of the fg function proposed by Cherkassky et al.
[9]. The Mackey-Glass predictor consisted of 4 inputs, 14 RBFs in the hidden
layer and 1 output neuron, while the approximator consisted of 2 inputs, 16
RBFs and 1 output. Table 1 shows the values of M SE, and M SS obtained
after training using the test patterns (different from those used for training).

The inputs of the networks were randomly deviated from their nominal val-
ues considering different values of ¢ and a multiplicative model of deviation.
Each value of E[M SE'] was experimentally computed over 50 tests. In each
test, all the inputs of the network zj; were perturbed taking a value equal to
xr(1 + 0g) with J; being a random variable that follows a gaussian distribu-
tion with average equal to zero and standard deviation equal to . Note that
this kind of perturbation is standard when modelling the tolerance margin of
analogue elements.
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Figures 1 and 2 represent the experimental and predicted values of E[M SE'].
The experimental values are plotted with their respective confidence levels at
95%. It can be observed that the values predicted by expression (11) accurately
fit those obtained experimentally until the degradation of M SE becomes large.
For example, we deduce from Figure 2 that M SFE for o equal to 0.05 is 16 times
larger than M SEy. Note that we have assumed small perturbations, and thus
the approximation is worse when o increases.

Thus, the validity of the approximation is demonstrated and, according to
(11), this means that the lower the M SS the lower the MSE degradation in
the presence of multiplicative noise. Thus, among RBF network configurations
that present a similar M SEp, the one with the lowest MSS provides the most
stable output when its inputs are perturbed.

Mackey-Glass temporal series
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Figure 1: Experimental and predicted MSE for the Mackey-Glass temporal series

5 Conclusions

We have derived and validated a quantitative measure of noise immunity against
multiplicative perturbations of RBF networks. This measure, which we term
Mean Squared Sensitivity (M SS), is explicitly related to the M SE degrada-
tion in the presence of multiplicative input perturbations. This relationship
shows that a lower value of M SS implies a lower degradation of M SE.

However, the analytical expression of M SS can be used as a regularizer
during the training process in order to improve the final performance of the
network with respect to noise immunity in the same way as was done for MLPs
in [6].
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Figure 2: Experimental and predicted MSE for the F8 approximator
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