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Abstract : The simulation of large spiking neural networks (PCNN) espe-
cially for vision purposes is limited by the computing power of general pur-
pose computer systems [5,9,10]. Therefore, the simulation of real world
scenarios requires dedicated simulator systems. This article presents architec-
tures of software and hardware implementations for PCNN simulator systems.
The implementations are based on a common event driven approach using
spike events for communication and processing flow. Furthermore, parallel
approaches utilizing the spike event computing are introduced for simulation
acceleration. Implementations of software simulators on workstation clusters
and parallel computers and hardware accelerators based on FPGAs, ASICs
and DSPs are described. The presented results demonstrate the capability to
simulate large vision networks close to real world/real time requirements.

1. Introduction

The examination of large vision PCNNs is of major interest for both the better under-
standing of brain function and the inspiration for computer vision. The simulation
performance of standard simulation systems is far below the requirements [5,9,10].
Thus special approaches are required. The basic paradigm for all presented algorithms
is the event driven simulation which benefits from the utilization of rather seldom
spike events. Chapter 2 describes the basic event driven algorithms and their imple-
mentation within the software simulator of  SPIKELAB [3]. Results of the simulator
are compared to GENESIS [1] runs of similar networks. In Chapter 3 parallel simula-
tion techniques and a parallel PVM simulator are described. The speedup of simula-
tion is shown by typical example networks of large vision PCNNs [10,13] on SUN
workstation clusters and a massively parallel Pentium III cluster. Chapter 4 introduces
neurocomputer architectures based on both the event driven and the parallel algo-
rithms. SPIKE128k [1] is a FPGA based single processor architecture, ParSPIKE [14]
is the extension to a parallel DSP design. NESPINN[5] and the successor system
MASPINN [10] are ASIC architectures. As part of MASPINN, a neuroprocessor
ASIC, the NeuroPipe chip [11] has been fabricated. Chapter 5 summarizes the results.

2. Event Driven PCNN Simulation

Spikes in a pulsed coupled neural network are rare and the connections between the
neurons of a network are sparse. Therefore the activity in these kind of networks is
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very low. Compared to the number of neurons in the network, just a fraction of them
is usually active. Hence modeling the spikes as events is straight forward but the
corresponding neuron models are getting more complex. This is due to the fact, that
each neuron model must predict its future behavior, with respect to the incoming and
outgoing spikes. Each time an incoming spike arrives at its inputs it must predict if it
will emit an outgoing spike or not. Contrary in time slice simulations the model may
be kept much simpler, because only the changes from one time slice to the other have
to be calculated and serve as basis for the next time slices. Therefore these models are
often  easier to implement – with the sake of performance degradation. The same is
especially true for learning algorithms, which are often described by an iterative algo-
rithm. Spending the effort in event-driven models returns faster simulations or enables
one to simulate larger networks in an acceptable amount of time. As an example we
compared the event driven simulation of SPIKELAB to the time sliced simulation of
GENESIS. We used a rather simple model, which is related to the spike response
model [7]. The postsynaptic potential (PSP) follows the equation
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and is weighted by the individual weight of the corresponding synapse. Choosing
2.7ms for τ results in a PSP, which is close to measured PSPs. An outgoing spike is
emitted, when the sum of all incoming PSPs crosses a fixed threshold. A network
with five fully connected layers of these neurons was built up and fed by a spike train
neuron, which generates spikes in a predefined interval. The delay between the neu-
rons was randomly chosen between one and three milliseconds. Figure 1 shows the
simulation time relative to the size of a time slice (left side) and relative to the net-
work size for different levels of activity (right side). Although the PSP is imple-
mented as a lookup table in GENESIS, the Performance of SPIKELAB is much
higher. Moreover the performance of GENESIS degrades much faster for higher
resolutions. As one can expect the simulation time of GENESIS is nearly independent
from the network activity, but SPIKELAB clearly profits from lower activities.

Fig. 1. Comparison of SPIKELAB and GENESIS

Therefore the event driven simulation of SPIKELAB is especially well suited for the
fast and precise analysis of the temporal aspects, like synchronization in pulsed
coupled neural networks. Larger networks may be accelerated by a parallel simulation
like described in the following chapter and in [2].
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3. Parallel PCNN Simulation

Common ANNs show very poor speedup for simulation on parallel computers
because of their high communication volume [8]. PCNNs consist of complex model
neurons and need lower communication effort due to the information exchange via
rather seldom spike events. Due to the inherent dynamic structure of the networks the
load and communication balancing is a very complex task. As a solution we use the
event driven approach considering only active neurons and additionally explore the
specific structure of the vision networks for appropriate network partitioning. The
presented parallel simulation algorithm is based on a farmer-worker simulation. The
neurons are placed on the workers by distribution of the data sets describing their
behavior. For each presynaptic neuron all connections to its successors together with
the connection weights are provided in an adjacency list called stimulation informa-
tion block (SIB). Spikes emitted by a neuron are called PreSpikes, received spikes
(distributed via SIB) are called PostSpikes. For our simulations we use two algo-
rithms. In the distributed version the SIBs are split and distributed over all workers.
On the other hand, the centralized approach dispenses only the neurons and all SIBs
reside completely in the local memory of the farmer. The distributed simulation is
more suitable for a message passing machine while the centralized simulation is more
appropriate for a shared memory architecture.

Distributed Simulation The distributed algorithm collects the processed PreSpikes in
local spike lists which are exchanged between workers. The SIBs are split and dis-
tributed. Originally, the SIBs are stored in a sender oriented way such that for all
presynaptic neurons the connections to postsynaptic successor neurons are in one SIB.
In a parallel simulation, this would lead to heavy traffic because the PreSpike of this
neuron has to be transformed into many PostSpikes which must be send to other
workers. Because one worker host has many postsynaptic neurons, the usage of Pre-
Spikes for communication reduces traffic substantially. Hence, SIBs are split and
distributed to the workers with postsynaptic targets once before simulation start.

Centralized Simulation The centralized algorithm stores all the SIBs in the local
memory of the farmer. All workers transmit their PreSpike to the farmer. The farmer
determines the SIBs and propagates the connections to the corresponding workers.
Hence, the farmer splits the SIBs and collects the processed PostSpikes in packets for
the corresponding targets. The worker uses a SIB cache with a simple cache strategy
which benefits from two simulation characteristics. Firstly, the activity in vision
PCNNs is quite local and slowly moving leading to a high reuse of cached SIBs.
Secondly, many neurons are stored on one worker and the neurons are mainly
connected to their neighbors leading to many local connections.

Both the distributed and the centralized simulator are implemented using the PVM
(Parallel Virtual Machine) environment with Sun Solaris. The neurons are distributed
once at the start of simulation, partitioning of the network is done in before within a
special compiler [8]. For simulation we used a Sun Sparc 5 Workstationcluster with
up to 12 nodes and a Fujitsu Siemens hpcline Pentium III (450 MHz) cluster with up
to 24 nodes (details in  [8], simulation time in simulated ms per virtual 1 ms timeslot).
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Number of nodes 1 2 4 8 12 16 24
Weitzel net [13], sparc 5, distributed 370 190 110 85
Weitzel net [13], sparc 5, centralized 490 270 160 90
Brause net [10], sparc 5, distributed 960 510 370
Weitzel net [13], hpcline, distributed 19 9.5 6.5 7
Brause net [10], hpcline, distributed 263 129 63 41 28
Tab. 1: Processing time (ms) per virtual timeslot (1ms) on different simulator systems

4. Neurocomputer Architectures

4.1. SPIKE128k and ParSPIKE

SPIKE128k [1] is a neurocomputer based on spike event processing with one dedi-
cated hardware pipeline and a single sender oriented SIB memory. The system is
composed of several VME type boards with programmable logic (FPGAs, CPLDs),
memories and dedicated arithmetic components. The system can be connected to
other SPIKE128k systems and to host computers via transputer links. The SPIKE128k
hosts a dedicated learning module [9]. Processing speed for the Weitzel net can be
found in [4].

ParSPIKE [14] is a concept for a successor system based on a parallel DSP approach.
Analog Devices SHARC DSPs with large on chip memory are used as complete
processing nodes. These nodes are composed with a spike switching circuitry and a
dedicated SIB memory controller on VME boards forming a system either for the
centralized or the distributed simulation algorithm. Estimations with a 2-DSP proto-
type and simulation results from the PVM simulator can be found in [4].

4.2. NESPINN and MASPINN
Both PCNN-accelerators, NESPINN [5] and MASPINN [10], make use of ASICs to
combine high processing speed with a customized architecture. The systems are based
on accelerator-boards connected to a host computer. Like the SPIKE128K,
NESPINN- and MASPINN-boards consist of a spike event list with a sender oriented
SIB memory and a processor-ASIC which computes a configurable neuron model. In
contrast to the SPIKE128K, the NESPINN and MASPINN are not limited to a fixed
neuron model, but allow the configuration of neuron models with up to 16 dendrite
potentials (DPs) with different functionality (e. g. inhibitory, excitatory, multiplica-
tive). To increase the processing speed, in both systems active  DPs are tagged and
only the active ones are processed by the neuroprocessor-chip.
A block diagram of a MASPINN-board is depicted in Fig2 (left). In Fig2 (upper right)
the architecture of the neuroprocessor-ASIC of the MASPINN-system, the
NeuroPipe-Chip, is shown. The MASPINN-system – as the successor of the
NESPINN-system – includes some additional architectural concepts in order to gain
about another order of magnitude in speed. On board-level, weight caches have been
introduced. They allow a further parallelization of the processing steps necessary for
the simulation of a PCNN. Furthermore, a compressed DP-Memory, relaxes the
bandwidth requirements of the neuron-processor-chip.
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Fig. 2. MASPINN with the NeuroPipe-Chip

Pre-analysis tests the relevance of each DP in the context of the other DPs of the
corresponding neuron. This reduces the computational load during the computation of
the membrane potential in the pipeline of the NeuroPipe-Chip. Also on chip-level, an
on-chip inhibition unit in the NeuroPipe-Chip may emulate the inhibition of the entire
network or large parts of it. Since all parameters related to inhibition and its computa-
tion are hosted on-chip, the bandwidth and computational requirements of the entire
system are also reduced.
A prototype of the NeuroPipe-Chip with two parallel processing elements (PEs) has
been fabricated in a 0.35um-digital-CMOS technology (see chip photo in Fig2-lower
right).

5. Results and Conclusion

The main conclusion of this article is that event driven algorithms are the key to high
speed PCNN processing. Based on these algorithms parallel approaches and dedicated
hardware architectures can deliver almost any required simulation performance. The
presented implementations and concepts pursue different goals and therefore are not
comparable solely on the basis of simulation speed. Neurocomputers based on dedi-
cated neuroprocessor-ASICs like NESPINN and MASPINN certainly offer maximum
simulation speed. Concerning flexibility, handling and the ease of implementation a
software solution like the SPIKELAB simulator is superior to dedicated hardware.
However the simulation performance for real scenarios is still insufficient. Even a
parallel implementation, e.g. on the basis of PVM, achieves the required performance
only on large high performance computers like hpcline. The ParSPIKE concept com-
bines commercial hardware with dedicated communication hardware to overcome the
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typical bottleneck in parallel processing. Between the extremes of the ParSPIKE and
the MASPINN system there is the SPIKE128k. The application of the presented sys-
tems and architectures pursues two aspects. On the one hand PCNNs should be devel-
oped and examined and on the other hand PCNNs should be applied to real-world
tasks. For the development of PCNNs the required simulation performance is less
crucial while there is a strong demand for flexibility and handling. Suitable simulators
for such a task are software simulators. For applications of real world tasks on the
other hand, systems like NESPINN and MASPINN present a superior platform for the
simulation of PCNNs.
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