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Abstract. Neural networks have been used as triggers in HEP for more
than ten years, and continue to deliver promising results. In this article,
we will give an overview of the triggering problem and present general
neural online solutions retained by physicists to process data in High
Energy Physics triggers. We will finally describe an FPGA implemented
architecture dedicated to fast neural computations, taking advantage of
massive parallelism in order to meet the tight timing constraints imposed
by Level 1 neural triggers.

1 Triggering problem in HEP

In modern accelerators, particle bunches collide with very high frequency, typi-
cally of order of 100 ns (bunch crossing time), resulting in possible interactions
to be recorded by the data acquisition systems. The products resulting from
such interactions are measured in complex electronic detector systems (divided
into subdetectors realizing a variety of detection techniques) where their asso-
ciated circuitry translates physical quantities into a data flow. Trigger systems
aim at reducing the data flow by filtering interesting physical events and, as a
consequence reject background coming from the noisy environment.

A trigger scheme generally consists of several triggering levels. The data
flow coming from the subdetectors is continously reduced to a degree that can
be handled by the subsequent trigger level: Level i trigger collects data from
level i-1 and rejects most of the unwanted events. Such triggering schemes are
described in figure 1.

In level 1, the incoming information is available only to the individual sub-
detector with very limited access to information of the other subdetectors.
Because of tight timing constraints only simple processing is performed. For
example, thresholds on energies in a specific subdetector may be applied. Such
triggers have a typical processing time inferior to 1 us.

In level 2, more sophisticated algorithms are generally performed. These al-
gorithms aim at grouping data coming from various subdetectors by exploiting
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Figure 1: A multistep triggering scheme

correlations in order to build topological structures. Typical processing time
for this level is 10-20 ps or more.

In levels 2, processing is generally distributed on processor farms running
in parallel and destined to reconstruct the physical event, within a time of the
order of 1s.

Generally, the first two levels are hardware triggers based on subdetector
information available shortly after the interaction. Higher trigger levels are
implemented in software since the processing time is less demanding.

2 Adopted solutions for triggering

2.1 Hardware technology
2.1.1 Programmable logic versus specific custom integrated circuits

There are currently many manufacturers offering a wide range of FPGA prod-
ucts, the architecture of which can differ substantially. Nevertheless, some
points may be generalized : First, most of FPGAs based on memories consist
of a matrix core of logic cells implementing both combinatorial and sequential
logic. Second, all these cells are interconnected via a programmable bitstream
according to the desired configuration.

FPGA devices are continuing to advance rapidly in both density and perfor-
mances and seem efficient in a number of fields such as digital signal processing,
communication, multimedia applications. Today’s FPGAs offer the equivalent
of 10 million system gates.
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Depending on the type and family of the FPGA device, other resources are
added to the existing ones, targetting specific applications. For example, the
VIRTEXII family of Xilinx contains embedded multipliers, which are appropri-
ate to perform billion of MACs (Multiplication Accumulation) per second[1].

The flexibility linked to the ease of reprogrammability is of major interest
since it allows a certain independance towards the application, compared to
VLSI typical devices which impose important changes in their conception flow if
a minor change occurs in the application. Another advantage of programmable
logic compared to ASIC is its lower cost in terms of money and development
time.

2.1.2 FPGAs and DSP processors

Despite their intrinsic technological difference, FPGA’s and DSP processors
target the same signal processing applications. DSP processors are widely em-
ployed because of their software oriented approach, which does not require
specific knowledge in electronics engineering. Moreover, their internal speed
make them potential candidates to many applications requiring massive itera-
tive computations. Today’s DSPs are very cheap and constitute a good answer
to many problems in the signal processing world.

For several years, FPGAs have been a satisfactory alternative to DSP pro-
cessors in signal processing. Despite their lower internal resources in terms of
clock speed frequency notably, they have closed the gap by massively paralleliz-
ing the computations. At the same time, the implementation of applications in
the circuit demands good knowledge of synthesis flow and of the technology of
the device. This point is currently circumvented by utilizing predefined IP (in-
tellectual property) modules performing algorithms and DSP functions. These
configurable cores may be very easily integrated within a design.

2.2 Hardware in Neural networks triggers
2.2.1 Level 2 neural trigger

One example of the use of a neural trigger at level 2 is well illustrated in the H1
experiment at DESY which has been running for several years. More details
about the trigger concepts of this experiment are given in [2]. The Level 2 total
processing time is of 20 us, half of it being dedicated to the neural network
preprocessing, which consists of an intelligent way of grouping data from Level
1 [3]. 64x64x1 MLP nets are implemented using CNAPS boards [4] whereas
the preprocessing algorithms are distributed among several FPGAs on separate
data distribution boards (DDB).

Another example of neural network implementation at Level 2 is described
in [5]. It has been tested on simulated data from the LHC environment and
consists of implementing a principal component analysis that performs dimen-
sionality reduction of the input data space. The neural network is mapped
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onto a multiprocessor parallel machine, based on DSP boards and offers high
processing speed compatible with the Level 2 timing constraints.

Basically, it can be assumed that today’s programmable devices such as
FPGAs or DSPs may be used since they can meet the timing requirements of
this level. Moreover, the trend is for engineers to integrate more and more “in-
telligence” at this level, developing more complex processing such as powerful
pattern recognition algorithms.

2.2.2 Level 1 neural trigger

With an incoming data flow 2 orders of magnitude greater than that of Level 2,
specifications are very different for this level. For example, in the calorimeter
trigger of ATLAS experiment, a decision has to be provided with a latency of
about 500 ns, with a data flow coming into the trigger at every bunch crossing
(25 ns). Until now, implementing digital circuits at this level was not considered
since the constraints were too strong for the technology and only analog designs
were studied [6]. Nevertheless, some digital solutions have been envisaged in [7]
and consist in using RAM memories with preloaded contents to implement the
neural net. This approach, implemented in the DIRAC experiment allows very
fast processing (765 ns) but to the detriment of the precision and size which
might be insufficient in other noisy environments.

Recent progress in digital technology allows to envisage utilizing digital
processors at Level 1 and thus implement more powerful tasks with even more
precision. The problem resides in the amount of data to be processed and
imposes a massively parallel distribution of the computations.

3 A neural architecture for Level 1 triggering

Promising experimental results in Level 2 have naturally brought physicists to
the idea of transposing Level 2 trigger concepts into Level 1. For example,
architectures like MLPs (multi-layer perceptrons) have shown their robustness
in Level 2 and seem appropriate to perform the same tasks at Level 1. A circuit
is currently being designed at LISIF (Laboratoire des Instruments et Systemes
d’Ile de France), to match these expectations.

Although the vocation of the circuit is to be as general as possible, it aims
at fulfiling the constraints imposed by the Level 1 trigger scheme in the ATLAS
experiment. It would then integrate the actual Level 1 trigger [8],[9], enabling
a conjugation of different processing methods.

As reported above, the main point consists of data arriving every 25 ns,
corresponding to a bunch crossing in the LHC detector. Data are first filled
into a pipeline and a decision is taken regarding the event in order to provide
pipelined data to Level 2.

The circuit is designed to classify showers in a calorimeter and then discrim-
inate electrons from hadrons and jets. A preprocessor sums analog signals from
the calorimeter and performs analog to digital conversion to limit the number
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Figure 2: Level 1 trigger hardware

of inputs to the neural network. Signals above a certain threshold constitute
towers and a local area around a maximum energy is furnished to the neural
network whose goal is to identify the signature of a particle.

An estimated processing time of 500 ns has been adopted assuming that
the total level 1 triggering time is 2.0 ps and that 1.5 us are reserved for data
transfer and preprocessing. Since the data arrive every 25 ns, a demultiplex
unit distributes them sequentially to several identical circuits allowing then to
parallelize the calculations thus reducing the processing time. A multiplex unit
then distributes the processed data, delivering outputs to the level 2 trigger
every 25 ns (Figure 2). Typical outputs of the neural processor consist of
indicating whether an electron, a jet or a hadron has been found.

In the following, it is assumed that the neural network is a MLP with
N; inputs, Nj, hidden units and N, outputs units. The general idea of the
architecture is based on a distributed computation of all neurons. N PEs
(Processing Elements) work in parallel, each of them performing a part of the
neurons’ potentials computation. The PEs organization consists of a matrix of
pXxq elements and is summarized in Figure 3.

Each PE contains a MAC (Multiply Accumulate) unit, an address gener-
ation unit and its associated internal memory for weight storage. A control
module generates different signals via a control bus and manages the entire
PE. Additionnal registers are foreseen in order to store intermediate results.
The weights are coded into 16 bits and activations into 8 bits, but these are
generic values that are easily configurable. An overview of the PE architecture
is given in Figure 4.

The neural network computation is performed in two steps. First, g out of
the IV; inputs are provided at every clock cycle on the ¢ input parallel buses.
This enables to minimize the number of input data to be provided at each cycle,
and simplifies considerably the circuit layout by reducing the number of I/0O
ports of the device. After N;/q cycles, all inputs are then processed. Neuron
parallelism is retained for the hidden layer computation: in this configuration,
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Figure 3: Distribution of the processing elements (PE)

the network slicing is equivalent to storing one row of the weight matrix within
a row of PEs. All sums of products are then accumulated within a row to
constitute the potential of the corresponding neuron. All potentials address in
parallel p LUTs (Look Up Tables) in which the activation function is stored.
The size of the table is configurable but a value of 256 is generally retained in
most of applications.

In a second step, the activations of all hidden neurons are broadcasted
horizontally to all PEs within a row. Each PE within a column computes a
partial sum of an output neuron’s potential according to a synapse parallelism
and subresults are accumulated before addressing once again the LUTSs in which
the activation function is stored. The circuit is currently designed to implement
a 128x64x4 MLP in 500ns. In this configuration N; = 128, N, = 64, N, = 4,
p = 64, g = 4. The number of 128 inputs has been chosen as an example
and corresponds to a local area with a 8x8 granularity around a tower in
both hadronic and electromagnetic part of the calorimeter. The 4 outputs may
correspond respectively to the identification of the four possible particle flavors:
electrons (photons),, tau-leptons, hadrons and jets.

The clock frequency of the circuit has been chosen to be 160 MHz since it
corresponds to a multiple of the LHC clock frequency of 40 MHz. States are
coded in 8 bits and weights in 16 bits which provides sufficient precision for
many applications. These values are nevertheless configurable.

The major advantage of this architecture is its processing speed. It is ob-
tained by distributing the tasks over many simple processing elements working
in parallel on the same data. Another advantage of this architecture is its rel-
ative independance to the number of hidden units, since it is sufficient to add
a new array of line processors to compute a hidden layer neuron. Finally, the
architecture targets implementation in an FPGA device. XILINX VIRTEXII
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Figure 4: Overview of a Processing Element

devices have been chosen since they combine both speed and internal resources.
Moreover the flexibility of this circuit makes it possible to adopt many config-
urations of neural networks with a variety of size and data precisions.

4 Conclusion

Neural Networks have proved their efficiency in HEP triggers as discriminators
between background processes and the interesting signal. The online utilization
of such networks have been implemented in hardware at different levels in the
triggering process. Until now, digital technology did not seem to be able of
processing the data flow within the time allowed for Level 1 and typical systems
were mostly analog.

Today, recent progress in digital signal processing electronics have opened
the way to extend Level 2 concepts in which sophisticated algorithms are al-
ready implemented into Level 1. This implies transfering more complexity near
the subdetector, and consequently performing better event filtering. In order
to illustrate this idea, we have presented an original architecture the goal of
which is to provide high speed neural processing, that also takes advantage of
the FPGASs’ intrinsic flexibility.
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