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Novelty detection for strain-gauge degradation
using maximally correlated components
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Abstract. A new method for the detection of the degradation of strain-
gauges attached to airframes is developed, using novelty-detection tech-
niques and maximally correlated components. This considerably improves
upon the previous method for the detection of changes in the response-line
gradient.

1 Introduction

Strain-gauges are attached to airframes to assess the damage caused by a flight
to the aircraft. Each stress cycle measured by such a gauge is classified into
a cell determined by the mean and alternating strain (the difference between
the maximum and minimum) of the cycle. These cells make up a Frequency Of
Occurrence Matriz (FOOM), and each cell contributes to a weighted sum eval-
uating the expected wear caused by the flight (see Hickinbotham and Austin [1]
a detailed account). The weights are chosen to reflect the damage caused by a
stress cycle of given severity, and a combination of high mean and alternating
strains is considered to be sufficiently damaging to put the aircraft out of service.
Thus, cells corresponding to extreme values of both strains are excluded from
the FOOM, which then has a triangular shape.

Unfortunately, strain-gauges themselves may be subject to degradation. There
are 4 modes of strain-gauge failure: spread noise (randomly elevated or depressed
counts in random cells), spike noise (large elevations of counts in one cell), inter-
cept shift (the linear relation r = as between strain and strain-gauge response
becomes r = as + b) and gradient shift (r = as becomes r = a's).

The detection of noise and of intercept shifts (Non-Gradient-Shift-Corruption
Detection, ngscd) by examining the FOOM’s themselves has been successfully
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Figure 1: A FOOM — the area outside the FOOM is black, and cells with zero
counts are white

carried out in [1]: this is done by extracting 2 unlikeliness features and 2 “eigen-
FOOM?” features (Principal Components — PC’s — see, e.g., Mardia et al. [2]*)
and feeding them into a Gaussian Basis Function Network (GBFN — see, Bishop
[4]). However, this technique fails in the detection of gradient shifts (gsd).
Further information about the flights is available in the form of auxiliary data
(a vector of g-levels attained during the flight), which can be used to deal with
gsd. The approach here is to extract features from this auxiliary data, and to
correlate these with the FOOM’s (considered as 1728-component vectors).

2 Algorithm

The unlikeliness features used in [1] are maintained, as they are important in
ngscd (especially noise corruption). For an arbitrary FOOM, these are a count
of unlikely cells and an unlikelihood measure. A cell is unlikely if the probability
density of its count is low according to a Gaussian pdf whose mean, p;, and vari-
ance, o7, are derived from a cell-by-cell analysis of a training set of uncorrupted
FOOM’s. The unlikelihood measure is )", |C; — p;|/0;, over the unlikely cells.

The PC features used in [1] are: if v is a PC of the training set of FOOM’s
(i.e., a vector in R'728) and f an arbitrary FOOM, then the feature value for f
corresponding to v is simply vTf.

Here we find vectors v € R!"?® in the subspace spanned by the training
set of FOOM’s which are mazimally correlated with vectors of auxiliary data
corresponding to the flights generating the FOOM’s. These will then be used
to define combined (flight/FOOM) features. The method differs from that of
canonical components (see [2]), which puts the auxiliary and FOOM data on an
equal footing, instead of treating the former as primary. The relation between
the two methods wil be addressed in a later paper.

Lor Turk and Pentland [5], in a pattern recognition context
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2.1 Mathematical development

Let sets of n vectors x* € R™ (corresponding to a training set of FOOM’s),
y* € RP (corresponding to auxiliary data from the flights giving rise to the
FOOM’s), where p > n > m, be given. Suppose u € R™ is also given. We wish
to find v € [y!,...,y"] C R? such that the t; = v'y* are maximally correlated
with the s, = uTx*, and ||v|]| = 1. Set v = Y3, where Y = (y!,...,y") € RP*",

Now
15: T 15"’ k T T
= — — S — 1
S——n S =u —nklx =u xXx=u Xe, ()

where X = (x!,...,x") e R™*? e=L1(1,...,1)T € R?, and t = BTY T Ye.

1 1
2 2 _ 2 T T1% T T T
= = -5 = —ulX][L, - X'u=—-u XPX" u, 2
o E sp— 5 = _u [ nee | X' u Su u (2)
where P =1, — nee”, and, o, = %UXTPYTY,B and o7 = %,BTYTYPYTY,B.

Now, we wish to solve the problem:

Ost

Mazimise reorr = with respect to B, subject to ||[Y || = 1. (3)

sOt

But rcopr is independent, of the scaling of 3, and o5 is entirely independent
of B, so the problem (3) is equivalent to:

Mazimise nog; = u XPYTY~, w.r.t. v,
subject to no? = Y'YTYPY'Yy =1, B=~/|Y"]. (4)

AsPisaprojection, y'YT'YPYTY~y = 4'YTYPTPYTY~ = ||PYTY~|?,
and problem (4) is equivalent to:

Mazimise u*XZ~, w.r.t. w, subject to ||Z~|| = 1,8 = ~v/|[Y7l|, (5)

where Z = PY'Y.

Let column-orthogonal U € RP*™, non-negative diagonal S € R"*™ (with
nonzero elements nonincreasing down the diagonal) and orthogonal V. € R**"
be a singular value decomposition for Z: Z = USVT.2 Then ST given by

Sk =0, if S;j = 0; 1/S;; otherwise (6)

is a pseudo-inverse for S, and Zt = VStUT is a pseudo-inverse for Z.

Now Z is not of full rank as P is a projection, and so at least one diagonal
element of S is 0. But, if Z=PY' =YT —ney’ =0, theny! =--- =y =y,
which we assume is not so.

Hence, if we put v = Z'n, problem (5) is solved by the solution of

Magzimise w*XZZ'n, w.r.t. n, subject to ||ZZin|| = 1. (7)

2The triplet U, S,V is only unique if ZZT has no equal eigenvalues
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Now let r = rank(Z) < n — 1. Then ZZ = USSTUT = UI"UT, where

1M = { Ié‘ 8 } € RPx", (8)

Consequently, problem (7) is equivalent to
Magimise u*XUIM (1MUY, w.r.t. n, subject to |[I0UTy|| =1, (9)

which has the solution IMUTy = IMUTXTu, (as the projection of the condi-
tion is now isotropic in the subspace in which we are looking for a solution), so
VSIINUTy = VStUTy = Ztn = v = ZTXTu, and

v=YZXTu/||[YZI X u||. (10)
This is the component in [y!,...,y"] mazimally correlated with u.
Letting s = (51,...,8,)T = XTu, t = (¢1,...,t,)T = YTv, we perform a

linear regression of t on s: we put t,,, = U,.0, where U, = [ne,s] € R**? 0 € R
and minimise ||t — t,,]|? = (U,0 — t)T(U,.0 — t) with respect to 6, so

1 [ sT(stT —tsT) } _

_ T “ler T,
0= (U,, U,,) U, t= TPs TPt

(11)

For an arbitrary FOOM f and corresponding auxiliary data vector g, we
define the feature value as u;Tg — 6; — 0>v1Tf, where v; is the component
maximally correlated (over a set of training FOOM’s) with the component u; of
the corresponding auxiliary data.

2.2 Use of the combined feature

Before extracting a further combined feature from the training FOOM’s and asso-
ciated auxiliary data, we project the training FOOM’s into the space orthogonal
to vi, and, similarly, before extracting the (i + 1)st combined feature, we project
orthogonal to v;, so that components which are used to “explain” earlier features
of the auxiliary data are not also used on later features.

For the first feature of this type, we chose u to be the mean of the auxiliary
data corresponding to the training FOOM’s, and, for the second, we use the first
PC of the auxiliary data.

3 Simulations

For our simulations, we used data split into two sets of 50 uncorrupted FOOM’s
as training and validation sets. As test FOOM’s we used a set of 50 uncorrupted
FOOM’s and sets of 50 FOOM’s corrupted by (simulated) spread noise, spike
noise, positive and negative intercept shifts and increased and reduced gradients.

Cell-by-cell statistics, maximally correlated components and regression coef-
ficients were extracted from the training set alone. The corresponding features
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were extracted from this set and used to train 10 randomly initialised GBFN’s.
The trained GBFN’s were presented with features extracted from the validation
set, and the GBFN with the least maximum novelty (as defined in [1]) over
this set was selected. The features extracted from the test data were then pre-
sented to this GBFN. The novelty was thresholded at various levels, dividing
the test FOOM’s into familiar (presumed uncorrupted) and unfamiliar FOOM’s
(presumed corrupt). The Receiver Operator Characteristic curve (ROC) (see
Figure 2 and, e.g., Scott et al. [3]) plotting true positive (here, a corrupt FOOM
classified as such) rates against false positive (an uncorrupted FOOM classified
as corrupt) rates and AUROC’s (Area Under the ROC) were then calculated for
the test data. The AUROC measures the performance of a family of classifiers,
a family with an AUROC of 1 being perfect and a family of random classifiers
having an AUROC of 0.5.

This procedure was repeated 10 times for a range of GBFN parameter values
(the number of GBF’s: 2-8; and the minimum allowed determinant of the covari-
ance of a GBF: 2773-2764) to obtain a sample of AUROC’s for each parameter.

The parameter value with the highest value of pisuvroc — 20 suroc 1S chosen as
a compromise between reliability and optimum performance.

3.1 Results

The simulation was carried out for gauges in 2 locations, one considered relatively
easy to analyse aerodynamically and one considered to be hard to analyse.

Although the present method has no parameter values for which pyyroc —
20 suroc 18 less than 0.5 for gsd, pavroc — 20auvroc for the old method was less
than 0.5 for gsd at every parameter value for the “easy” location, and at 60 out of
70 for the “hard” location. For ngscd, no parameter value led to ptavroc — 20 auroc
being less than 0.5 for either method.

cor- location u, old 14, new | improve- o, old o, new
ruption method | method ment method | method
ngscd “easy” 0.92902 0.80246 -14% 0.01492 0.00638
“hard” 0.85674 0.87146 2% 0.01278 0.01552
gs “easy” 0.45152 0.80232 78% 0.02136 0.01363
“hard” 0.57979 0.75202 30% 0.02285 0.01018

Table 1: AUROC statistics for ngscd and gsd

Table 1 and Figure 2 show that the new method dramatically outperforms
the old on gsd. Moreover, the new method is also more reliable, as shown by the
reduced o’s for its AUROC’s, and less dependent on a correct choice of GBFN
parameters, as shown by the massive reduction in the number of parameter values
for which pavroc — 20 svroc < 0.5. On the problem of ngscd, the new method is
not as good as the old, but this is of minor relevance, as this problem has already
been solved.
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Once the best parameter value for a given stress location has been determined,
the full training algorithm takes ~ 100s and the classification of an unseen FOOM
by a trained GBFN ~ 0.6ms, on a 550MHz PC.
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Figure 2: ROC’s for the new method (solid) and that of [1] (dashed). Clockwise
from top left: ngscd at “easy” location; gsd, “easy”; gsd, “hard”; ngscd, “hard”

4 Conclusion

The new method presented here has a much improved performance for gsd, en-
abling it to be used in combination with the previous method to detect all 4
modes of strain-gauge degradation in practical applications.
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