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Abstract. In this paper, we study a natural extension of Multi Layer
Perceptrons (MLP) to functional inputs. We show that fundamental
results for numerical MLP can be extended to functional MLP. We ob-
tain universal approximation results that show the expressive power of
functional MLP is comparable to the one of numerical MLP. We obtain
consistency results which imply that optimal parameters estimation for
functional MLP is consistent.

1 Introduction

It is quite common in current application to deal with high volume data that
can be considered as functions. This is the case for instance for time series
(which are mapping between a date and a value), weather data (which are
time-varying geographical mappings), etc. Functional Data Analysis (FDA,
see [4]) is an extension of traditional data analysis to this kind of functional
data. In FDA, each individual is characterized by one or more real valued
functions, rather than by a vector of R. The main advantage of FDA is to take
into account dependencies between numerical measurements that describe an
individual. If we represent for instance the size of a child at different ages by
a real vector, traditional methods consider each value to be independent from
the others. In FDA, the size is represented as a regular function that maps
measurement times to centimeters. FDA methods take explicitly into account
the smoothness assumptions on the size function.

Most FDA methods share two common aspects: they are linear and they
use basis expansion to represent functions with a finite number of parameters
(for instance thanks to a spline based representation of each input function). In
this paper, we propose a natural extension of Multi Layer Perceptrons (MLP)
that enables to make non linear modeling of function data, without using a
finite representation.
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2 Functional Multi Layer Perceptrons

2.1 From numerical neurons to functional neurons

A n inputs MLP neuron is built thanks to a non linear activation function T’
(from R to R), a numerical threshold b and connection weights, i.e. a vector
w € R™. Such a neuron maps an input vector z € R” to T'(b + wx), where
wz is the scalar product of w and x, and can be seen as the image of x by the
linear form defined by w.

As was already mentioned and studied in [7], there is no reason to limit
neurons to finite dimensional inputs, as long as we consider w as a general
linear form. Indeed, if F is a vectorial space and E* its dual, we can define
a neuron that maps elements of E to real numbers, thanks to an activation
function 7', a numerical threshold b and a “weight form”, i.e. an element w of
E*. Such a neuron maps an input vector z € E to T'(b+ w(z)) € R.

This very general approach, which makes no assumption on the dimension of
E, has been fruitful to prove very broad approximation results in [7]. The main
drawback of the proposed model is that it relies on (approximate) manipulation
of linear forms on an arbitrary vectorial space, which is not easy in general.
That’s why we specialize the model to functional spaces as follows.

We denote p a finite positive Borel measure on R™ (the rational for using
such a measure will be explained in section 4), and LP(u) the space of measur-
able functions from R™ to R such that [|f|Pdy < co. Then we can define a
neuron that maps elements of LP(u) to R thanks to an activation function T', a
numerical threshold b and a weight function, i.e. a function w € L9(u) (where
q is the conjugate exponent of p). Such a neuron maps an input function g to
T+ [wg du) € R.

2.2 Functional MLP

As a functional neuron give a numerical output, we can define a functional MLP
by combining numerical neurons with functional neurons. The first hidden layer
of the network consists exclusively in functional neurons, whereas subsequent
layers are constructed exclusively with numerical neurons. For instance an one
hidden layer functional MLP with real output computes the following function:

H(g) = éaiT (bi + /wig du) , (1)

where w; are functions of the functional weight space.

3 Universal approximation

The practical usefulness of MLP is directly related to one of their most impor-
tant properties: they are universal approximators (e.g. [3]). M. Stinchcombe



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 7-12

has demonstrated in [7] that universal approximation is possible even if the in-
put space of the MLP is an (almost) arbitrary vectorial space. Unfortunately,
the proposed theorems use quite complex assumptions on linear form approx-
imations. We propose here simplified versions that are directly applicable to
FDA.

3.1 Theoretical results
Following [7], we introduce a definition:

Definition 1. If X is a topological vector space, A a set of functions from
X to R and T a function from R to R, S (A) is the set of functions exactly
computed by one hidden layer functional perceptrons with input in X, one real
output, and “weight forms” in A, i.e. the set of functions from X to R of the
form h(z) =30 BiT(l;(x) + b;) wherep € N, 3, € R, b; € R and I; € A.

We have the following results:

Corollary 1. Let p be a finite positive Borel measure on R™. Let 1 < p < 00
be an arbitrary real number and q be the conjugate exponent of p. Let M be a
dense subset of LY (u) . Let Apr be the set of linear forms on LP(u) of the form
I(f) = [ fgdu, where g € M. Let T be a measurable function from R to R
that is non polynomial and Riemann integrable on some compact interval (not
reduced to one point) of R. Then S;p(”)(ANI) contains o set that is dense for
the uniform norm in C(K,R), where K is any compact subset of LP(u) and
C(K,R) is the set of continuous functions from K to R.

Proof. We give here a sketch of the proof which can be found in [5]. For p < oo,
Aps is dense in (LP(p))* = L9(u) and therefore, corollary 5.1.3 of [7] applies
(hypothesis on T allow to satisfy hypothesis of this corollary, thanks to [2]).
For p = oo, we show that the set of functions defined on L*°(u) by I(f) =
a+ [ fgdu where g € M separates points in K, thanks to approximation of
elements of L'(11). Then, we apply theorem 5.1 of [7]. O

For p = 1, we must add an additional condition:

Corollary 2. Let p be a finite positive compactly supported Borel measure on
R™. Let T be a measurable function from R to R, that is non polynomial and
Riemann integrable on some compact interval (not reduced to one point) of R.
Let M be a subset of L>(u) that contains a set which is uniformly dense on

compacta in C(R™,R). Then Sﬁl(“) (Apr) contains a set that is dense for the
uniform norm in C(K,R), where K is a compact subset of L'().

Proof. We prove that Ay is dense in (L(u))* = L>(p) for the weak-* topology
thanks to a two steps process: first we approximate a function in L*°(u) by a
compactly supported continuous function (thanks to Lusin theorem, e.g. [6]).
Then we approximate this function on the support of the measure p thanks
to hypothesis on M. The conclusion is obtained thanks to corollary 5.1.3 of
[7]. O



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 7-12

3.2 Practical consequences

Corollaries 1 and 2 show that as long as we can approximate functions in L?(u)
or in C(R™,R) (with elements of M), we can approximate continuous functions
from a compact subset of LP(u).

On a practical point of view, M can be implemented by numerical MLPs.
Indeed, [1] provides density results in LP (1) spaces (p < o) for MLP calculated
functions, which is exactly what is needed for corollary 1. For corollary 2 we
need universal approximation on compacta of continuous functions, which can
again be done by numerical MLP, according to results of [2].

Corollaries 1 and 2 allows therefore to conclude that given a continuous
function from a compact subset of a LP(u) space to R and a given precision,
there is a functional MLP (constructed thanks to numerical MLP) that ap-
proximates the given function to the specified accuracy. The unexpected result
is that the approximating MLP uses a finite number of numerical parameters,
exactly as in the case of finite dimensional inputs.

4 Consistency

4.1 Probabilistic framework

In practical situations, input functions are not completely known but only
through a finite set of input/output pairs, i.e., (z;,g(z;)). In general, the z; are
randomly chosen measurement points. To give a probabilistic meaning to this
model, we assume given a probability space P = (2, A, P), on which is defined a
sequence of sequences of independent identically distributed random variables,
(X7)ien with value in Z, a metric space considered with its Borel sigma algebra.
We call Py the finite measure induced on Z by X = X{ (this observation
measure plays the role of y in the universal approximation results). We assume
define on P a sequence of independent identically distributed random elements
(G7)jen with values in LP(Px) and we denote G = G.

Let us now consider a one hidden layer functional perceptron that theo-
retically computes H(a,b,w,g’) = Zle a;T (b; + [w;g’ dPx), where ¢/ is a
realization of G7, and each w; belongs to LY(Px). We replace this exact cal-
culation which is not practically possible by the following approximation (a
random variable) :

k m
f](a, b,w, GI)™ = ZaiT (bi + % sz(le)Gj(Xl])> (2)
i=1

=1

In practical settings, we will compute a realization of H™ for each input func-
tion realization associated with its evaluation points (which are themselves
realization of the evaluation sequences).
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4.2 Parametric approach

As explained in section 3.2, we propose to rely on numerical MLP for practical
representation of weight functions. More generally, we can use parametric
regressors, that is a easily computable function F' from W x Z to R, where W
is a finite dimensional weight space (numerical MLPs are obviously a special
case of parametric regressors when the number of parameters is fixed). With
parametric regressors, equation 2 is replaced by:

k m
H(a,b,w,G")™ = ;aiT <bi+ EZE(ug,X?)G”(X?)) (3)

=1

4.3 Consistency result

The parametric approach just proposed allows to tune a given functional MLP
for a proposed task. In regression or discrimination problems, each studied
function G7 is associated to a real value Y7 ((Y7);en is a sequence of inde-
pendent identically distributed random variables defined on P and we denote
Y = Y!). We want the MLP to approximate the mapping from G* to Y and
we measure the quality of this approximation thanks to a cost function, [. In
order to simplify the presentation, we consider as in [8] that { models both the
cost function and the calculation done by the functional MLP, so that it can be
considered as a function from L?(Px) x R x W, where W is a compact subset
of R? which corresponds to all numerical parameters used in the functional
MLP (this includes parameters directly used by the functional MLP as well as
parameters used by embedded parametric regressors).

The goal of MLP training is to minimize A(w) = E(I(G,Y,w)). Unfortu-
nately, it is not possible to calculate exactly A which is replaced by the random
variable A, (w) = £ 3" I(G7, Y7, w). In [8], H. White shows that for finite

n
dimensional input spaces and under regularity assumptions on I, Xn converges
almost surely uniformly on W to A, which allows to conclude that estimated
optimal parameters (i.e., solution to min,ew A, (w)) converge almost surely to
optimal parameters (i.e. to the set W* of solution to min,,cw A(w)). We have
demonstrated in [5] that this result can be extended to infinite dimensional
input spaces, i.e. to LP?(Px).

Unfortunately, we cannot directly rely on this result for practical situations,
because we cannot compute exactly H, but rather H™. We define therefore [
by exactly the same rational as [ except that the exact output of the functional
MLP is replaced by H™. This allows to define A7 (w) = 1 Zjvzl ™ (GI,Y7,w),
where m = inf1<;<, m;, and @' a solution to min,ecw Xﬁ (w).

We show in [5] that under regularity assumptions on the cost function I and
on the parametric regressors, lim,, oo lim,, .~ d(w;*, W*) = 0.

The practical meaning of this result is quite similar to the corresponding
result for numerical MLP: we do not make systematic errors when we estimate
optimal parameters for a functional MLP using a finite number of input func-
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tions known at a finite number of measurement points, because the estimated
optimal parameters converge almost surely to the “true” optimal parameters.

5 Conclusion

We have proposed in this paper an extension of Multi Layer Perceptrons that
allows processing of functional inputs. We have demonstrated that the proposed
model is an universal approximator, as numerical MLP are. We have also
demonstrated that despite a very limited knowledge (we have in general a
finite number of example functions and a finite number of evaluation points
for each function), it is possible to consistently estimate optimal parameters on
available data (as in the case of numerical MLP).

Those theoretical results show that functional MLP share with numerical
MLP their fundamental properties and that they can therefore be considered as
a possible way to introduce non linear modeling in Functional Data Analysis.
Further work is needed to assess their practical usefulness on real data and
to compare them both with linear FDA methods and with basis expansion
representation techniques used in FDA.
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