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Abstract. Biomedical research is a challenge to neural network com-
putation. As medical doctors and bioscientists are facing vast, rapidly
growing amounts of data, the need for advanced exploratory data analysis
techniques increasingly moves into the focus of attention. In this context,
artificial neural networks, as a special kind of learning and self-adapting
data processing systems, have to offer considerable contributions. Their
abilities to handle noisy and high-dimensional data, nonlinear problems,
large data sets etc. have led to a wide scope of successful applications in
biomedicine.

1. Neural Networks in Biomedicine

Biomedical research is an important application domain for neural computation
techniques. Vice versa, neural network modeling is influenced by concepts from
experimental and theoretical biology. This cross-fertilization aspect has been
a continuous source of inspiration since the early days of biomedical neural
network computing (e.g. [38],[44],[25],[26]).

A major focus in exploratory data analysis, data mining, and knowledge
discovery is to visualize high-dimensional data and to analyze its intrinsic
structure. In the biomedical domain, respective methods should provide tools
for data assessment and diagnostic decision support for the domain experts,
e.g. medical doctors or bioscientists. In this context, neural networks can be
utilized as powerful instruments providing techniques for adaptive and, in par-
ticular, non-linear data processing. The latter aspect makes an important
difference in comparison to conventional methods in linear statistics, such as
linear regression, factor analysis, principal component analysis etc.

For exploratory data analysis, unsupervised neural network clustering or
Vector Quantization (VQ) algorithms have been applied successfully to a wide
scope of biomedical data analysis problems. VQ procedures map a data space
onto a finite set of prototypical feature vectors, a so-called codebook. Examples
of this class of algorithms are elementary VQ methods such as LBG [15] and
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k-means clustering [1],[5],[8] or more refined, ‘soft-competing’ algorithms such
as Kohonen’s Self-Organizing Maps (SOMs) [14], minimal free energy VQ [20],
[4], or the ‘neural gas’ algorithm [16].

One of the most powerful neural network techniques in this context is the
SOM which provides a robust method to visualize essential properties of the
data [41]. Under certain conditions, it represents a topographic mapping of
high-dimensional input data onto a low-dimensional output space usually cho-
sen as a hypercube. Various extensions for the basic SOM are known for faithful
data modeling and analysis. One of the most important is the Growing SOM
(GSOM) approach which allows a successive adaptation of the output space
structure to prevent violations of topography. In fact, the GSOM realizes a
non-linear principal component analysis (PCA). A second feature is the control
of magnification induced by the SOM which is closely related to the problem of
optimal information transfer [19],[55]. A magnification control scheme can be
implemented by local learning [35]. Other extensions relate to learning using
auxiliary data [47], probability density estimation [42], or kernel methods [37].

Once the training of a SOM is completed, further data analysis is possible
using the information already acquired by the network. In particular, if the
topography for a given SOM is proven, one is able to investigate the low-
dimensional model instead of the original data. For this purpose, conventional
clustering methods such as Ward-clustering or single linkage clustering can be
applied to SOM [48],[53]. For a comprehensive overview we refer to [48].

Further methodological achievements have emerged as valuable extensions
to the classical SOM, such as the Double SOM [21] or the Deformable Fea-
ture Map [30]. These advances have not only been shown to be conceptually
interesting, but have proven their practical applicability in biomedicine, such
as medical image segmentation and registration by the Deformable Feature
Map [27], gene expression data analysis by the Double SOM [54], or the use of
adaptive metrices based on auxiliary data [40].

In the following, we sketch several examples taken from our own research
work that illustrate the applicability of both supervised and unsupervised neu-
ral network computation techniques to a wide range of biomedical applications.

2. Biomedical Image Analysis

2.1. Segmentation of Multispectral MRI Data Sets

A classical problem of neural network computing in biomedicine is image seg-
mentation. In [29], an algorithmic approach has been presented that aims
to combine Unsupervised Clustering (UC) and Supervised Classification (SC)
for image segmentation, where the information obtained during UC is not dis-
carded, but is used as an initial step towards subsequent SC. Thus, the power of
both image analysis strategies can be combined in an integrative computational
procedure. This is achieved by applying Generalized Radial-Basis-Functions-
(GRBF-) neural networks [10],[18].

As an example, we sketch the segmentation of multispectral 3D MRI data
sets of the human brain consisting of 4 different MRI acquisition sequences with
respect to the tissue classes “gray matter”, “white matter” and “cerebrospinal
fluid”, which is a classical problem of brain image analysis with a wide scope
of relevant clinical applications in neurology, psychiatry, and neuroradiology.
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Figure 1: Segmentation. (a) T weighted image of a 3D data set; (b) Corre-
sponding segmented image with gray-level representation of the tissue classes
(medium gray = “gray matter”, light gray = “white matter”, dark gray =
“cerebrospinal fluid”).

After correct anatomical alignment of the 4 data sets, the relevant region of
interest, i.e. the brain, has to be extracted, see below. Finally, for each voxel,
we obtain a 4-dimensional feature vector representing the signal intensities of
the different MRI sequences. In [29], UC image segmentation is performed by
minimal free energy VQ [20],[4], enabling unsupervised exploratory analysis of
the image data on different scales of feature space resolution. For subsequent
SC analysis, the UC results are not discarded, but can be re-utilized for the
training of a GRBF neural network. Fig. 1 presents typical segmentation results
for the brain tissue classification problem sketched above.

Meanwhile, this segmentation approach has shown to be useful for a wide
scope of clinical applications ranging from plaque characterization in atheroscle-
rosis (fig. 2) to high-precision segmentation and volumetry of white-matter
lesions in demyelinating diseases such as multiple sclerosis [24].

2.2. The Deformable Feature Map

In biomedical pattern analysis, an important issue is to exploit apparent simi-
larities of data sets when comparing different, but similar objects. In biomed-
ical research data sets, this phenomenon can be observed frequently (see e.g.
[26]). For example, one may think of the interindividual variability of anatom-
ical features: there are no completely identical biological individuals, but there
may be obvious anatomical “resemblances” (see e.g. the brains of two different
individuals in fig. 4 a,b). Thus the question arises whether neural network
training should be repeated for each data set separately, or knowledge could be
re-utilized for new data sets in order to reduce the expense w.r.t. computation
and human intervention time.
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Figure 2: Tissue classification based on multispectral MRI data: Left: T1
weighted MRI cross-section of the thigh of a patient with atherosclerosis. The
region of the femoral vessels is marked. Middle: Magnification of the vessel
region as indicated on the left image. Right: Tissue segmentation based on
minimal free energy VQ of the gray level spectra enabling a distinction between
different tissue classes such as fat, muscle, fibrotic tissue etc.
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Figure 3: Cluster specializing on voxels representing the arterial vessel wall
(A. femoralis superficialis) indicated by highlighted pixels. The images repre-
sent subsequent cross-sections of the vessel region (such as indicated by fig. 2
(middle)) at different levels. The lumen of the vessel is reduced by regional
plaque-induced thickening of the vessel wall in the last few images.

Motivated by the efforts for optimizing the image analysis system sketched
above, an algorithm has been discovered as a conceptual extension of self-
organizing maps that provides adaptive plasticity in function approximation
problems: the Deformable Feature Map [31],[30]. This approach reduces a class
of similar function approximation problems to the explicit supervised one-shot
training of a single data set. This is followed by a subsequent, appropriate
similarity transformation which is based on a self-organized deformation of the
underlying multidimensional probability distributions.

Applications of this algorithm have been presented to both automatic non-
linear image registration [30] and segmentation [31],[32], see also fig. 4.

2.3. Conceptual Extensions and Additional Applications

Several conceptual extensions of the image analysis system comprise:
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Figure 4: Results of fully automatic segmentation of multispectral magnetic
resonance (MR) imaging data sets of the human brain using the Deformable
Feature Map approach. The upper line (a,b) shows so-called T1-weighted MR,
images. The lower line (c,d) shows the corresponding segmentations with re-
spect to three classes “white matter” (light gray), “gray matter” (middle gray),
and “cerebrospinal fluid” (dark gray). The images of the left column (a,c) be-
long to an individual Y, the images of the right column (b,d) belong to a
different individual X. The segmentation of Y (c) served as a reference data
set for a fully automatic segmentation of X, shown in (d). From [31].

Automatic pre-segmentation: As mentioned above, the relevant regions
of interest have to be extracted prior to segmentation. As manual contour trac-
ing by human observers is very time-consuming, this is an important issue for
the practical applicability of the system. For this purpose, a neural network
based pre-segmentation system for the definition of brain contours in multi-
spectral MRI data sets was developed and evaluated [23]. Image data were
represented in a 63-dimensional feature space consisting of 3 spatial and 60
gray level coordinates of each voxel and its neighborhood. The segmentation
quality achieved by GRBF neural network classification was comparable with
respect to results obtained by human observers: The variability between man-
ual and automatic contour definition was in the range of the inter-observer
variability of different human expert readers.

Multispectral image synthesis: For some applications, it is useful to
compress the image information of multispectral data into a single data set.
For this purpose, a method called SOMSIS (Self-organized Multispectral Im-
age Synthesis) was developed that performs a nonlinear principal component
analysis by data projection onto a parameterized one-dimensional SOM. An
example is presented in fig. 5. The method has shown to be helpful as a pre-
processing step to nonlinear image registration of multispectral MRI data of
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the human brain by the Deformable Feature Map, see above [30].

Analysis of phonation using MRI: For the evaluation of the functional
anatomy of the oro-pharyngeal cavity during phonation based on MRI data
sets, a conceptually similar data analysis technique was applied: The goal was
to define a nonlinear principal component of the vocal tract in order to define
cross-sectional “area functions” that play an important role in speech produc-
tion modeling. For this purpose, healthy professionally trained volunteer speak-
ers performed a prolonged emission of sounds of the German phonemic inven-
tory during MRI acquisition. After semi-automatic segmentation of the vocal
tract, the nonlinear principal component was determined by a one-dimensional
SOM. In contrast to the SOMSIS application sketched above, spatial coordi-
nates are used instead of signal intensity coordinates. An example is presented
in fig. 6.

Figure 5: Self-organized multispectral image synthesis (SOMSIS). (a) T'1-
weighted image from a multispectral MRI data set composed of 4 MRI ac-
quisition sequences; (b) Compressed image using the SOMSIS projection.

3. Time-Series Analysis

3.1. Image Time-Series

Besides the classical domains of biomedical time-signal analysis such as EKG
or EEG processing, the analysis of biomedical image time-series has become
an issue of growing importance for both basic research and clinical application.
Neural network clustering by deterministic annealing has been presented as
a powerful strategy for self-organized functional segmentation of biomedical
image time-series data identifying groups of pixels sharing common properties
of local signal dynamics [28]. Successful applications include (i) functional
MRI data analysis for human brain mapping, (ii) dynamic contrast-enhanced
perfusion MRI for the diagnosis of cerebrovascular disease, and (iii) magnetic
resonance mammography for the analysis of suspicious lesions in patients with
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(b)

Figure 6: Evaluation of the functional anatomy of the oro-pharyngeal cavity
during phonation using MRI: (a) Midsagittal MRI section of the vocal tract.
(b) Segmented vocal tract with nonlinear principal component as defined by a
1D-SOM.

breast cancer. Alternative approaches to exploratory biomedical image time-
series analysis range from k-means type clustering (e.g. [2]) and SOMs (e.g. [7])
to global optimization techniques (e.g. [9]). For further bibliographical data and
details referring to the applications mentioned above, we refer to [28].

3.2. Functional Genomics and Bioinformatics

Exploratory analysis of gene expression profiles has emerged as an important
field of bioinformatics. For data partitioning and visualization, various cluster-
ing approaches have been proposed in the literature as such as agglomerative
clustering [6] or several variants of 2D-SOMs [22],[39]. An application of the
Double SOM [21] to gene expression clustering is presented in this volume [54].

An alternative approach for data visualization in functional genomics is
proposed in fig. 7. It is based on a one-dimensional parameterized SOM that
enables fast and convenient projection of high-dimensional microarray gene ex-
pression profiles onto a one-dimensional manifold. In contrast to the 2D-SOM
approaches cited above, this provides a graphical output intuitive for biolo-
gists, where the gene expression profiles are ordered along a linear list of subse-
quent entries in analogy to the classical agglomerative clustering approach by
Eisen et al. [6]. However, the linear arrangement here is solely data-driven by
self-organized alignment, i.e. it does not require meta-knowledge such as chro-
mosomal position or heuristic ordering criteria e.g. average expression level or
time of maximal induction used in [6] in order to enforce graphically appeal-
ing visualization. Fig. 7 (a) shows the yeast genome data set published in [6]
in the original alignment based on agglomerative clustering, heuristic criteria
and meta-knowledge as mentioned above. Fig. 7 (b) presents the self-organized
alignment obtained by the one-dimensional parameterized SOM. In contrast
to (a), discontinuities between neighboring expression profiles are markedly
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(b)

Figure 7: Analysis of microarray gene expression profiles of the budding
yeast saccharomyces cerevisiae. The data published in [6] consist of 2479 79-
dimensional gene expression profiles. (a) Original order proposed by [6]. (b)
Order induced by topology-preserving mapping using a parameterized 1D-SOM
as described in the text.

reduced.

4. Clustering Based on PET Image Features

The image analysis applications discussed above are focussed on local features
such as signal intensity or geometrical position. However, there are successful
applications of exploratory data analysis based on high-level features extracted
from biomedical image data as well. For illustration we consider the analy-
sis of Positron- Emission-Tomography (PET) data of patients suffering from
Wilson’s disease (WD). WD is a rare autosomal-recessive disorder of copper
metabolism which shows disturbances in liver function and basal ganglia lead-
ing to hepatic and extra-pyramidal motoric symptoms [46]. PET represents
an advanced nuclear medicine imaging technique which allows non-invasive
functional evaluation of metabolic processes which was applied here to detect
glucose metabolism in the brain. Relative glucose consumption [%] is calcu-
lated for three-dimensional regions of interest. Thus, five-dimensional data
vectors (components of thalamic region, putamen, caput nuclei caudati, cere-
bellum and midbrain) are obtained for each subject. Fig. 8 gives paradigmatic
examples of the PET images in three WD patients. In addition, the severity
of the neurological symptoms was evaluated using a clinical scoring system.
Application of GSOM to the PET data generates a two-dimensional output
space. The distribution of component values of the input dimensions according
to the generated output space is depicted in fig. 9. A subsequent SOM-Ward-
clustering [53] yields a three-cluster solution depicted in fig. 9. A deeper medical
analysis of the cluster solution shows that normal subjects and patients with
non-neurological WD are mainly attributed to cluster II, a high percentage of
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Figure 8: Paradigmatic PET Images (transverse slices in upper row and sagittal
slices in lower row) of 3 patients with WD. SOM analysis revealed three pat-
terns of glucose metabolism: normal (middle); decreased in stem brain which
consists of cerebellum (white arrow) and midbrain (left column); decreased in
striatothalamic areas (right column, white arrow in striatum).

the patients with pseudo-parkinsonian type of disease (TOD) is represented by
cluster I. The patients with pseudo-sclerosis TOD, however, are not unequivo-
cally attributed (cluster IT (54%), cluster IIT (46%)). Arrhythmic-hyperkinetic
TOD, which represents a mixture of symptoms of the former two types, corre-
spondingly fits to cluster I and III. Comparing this analysis with the pattern
of glucose consumption (fig. 9, component planes), cluster II can be assigned
as "normal’, cluster I as ”deficit in thalamostriatal areas” and cluster III as
" deficit in stem brain (cerebellum and midbrain)”. With respect to the WD pa-
tients, scoring of the severity of neurological symptoms was 0.5 1.1 in cluster
IT, 2.1+ 1.5 in cluster T and 0.6 £0.9 in cluster IIT (p = 0.002 after one-factorial
ANOVA). From the results can be concluded that the GSOM analysis was able
to initially identify three different patterns of brain glucose metabolism in WD
[51].

5. Analysis of Non-metric Data

The investigation and analysis of non-metric data frequently occurs in medi-
cal applications and social sciences. Therefore, a large set of methods based
on classical statistics exist. Besides these traditional methods new approaches
were developed in the community of soft-computing as well. Frequently, the in-
novative procedures provide the advantage of greater robustness and adaptivity
with the possibility of online learning if new data are available.

A frequent problem is clustering of data only based on similarities. For this
purpose neural network approaches were developed by HOFMANN& BUHMANN
(Pairwise Data Clustering by Deterministic Annealing — PDCDA) [12] and
GRAEPEL&OBERMAYER (Stochastic Self-Organizing Map for Proximity Data
- SSMPD) [11]. Both approaches are based on a stochastic gradient descent



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 25-38

Figure 9: GSOM-analysis of the WD-probands and resulting cluster solution
(upper row - left) together with the component planes of the 5 input variables
of the GSOM training: components for thalamic region, putamen, caput nuclei
caudati, cerebellum and midbrain (see text).

of an energy function. The advantage of the latter one is the incorporation of
neighborhood learning into the adaptation process (adapted from neural maps)
which should avoid local minima [36]. However, due to critical phase transitions
during the adaptation process, a faithful parameter regime for the involved
annealing strategies is needed [11]. On the other hand, these energy functions
could serve as a fitness function in an evolutionary algorithm (EA) approach
which is more robust. Furthermore, EAs are easy to implement and, hence,
practicable without deep insight. However, in EAs there is no guaranty to find
the optimum. Therefore, only large scaled EA applications with advanced
strategies (special genetic operators [13], subpopulation approaches [3],[50],
selection strategies [17]) are a real alternative to the mentioned neural network
approaches. A further important advantage of EAs is that additional knowledge
can be included for assessment. This aspect frequently is of special interest in
medical applications where some external information is available.

As an example study, we perform a rough comparison of the methods in
a practical application: One of the mostly used methods for the acquisition
of structures of interpersonal relationships in the area of psycho-dynamic psy-
chotherapy research is the method of the ’Core Conflictual Relationship Theme’
(CCRT) developed by LUBORSKY [43] investigating so-called relationship-
episodes. In each of such episodes the components wish of the subject (W),
response of the object (RO) and response of the subject (RS) were encoded
which are taken to perform the CCRT using a classifier system of categories
for each component. Yet, the categories are often correlated in meaning. There-
fore, they are collected in a set of clusters [34] which are then used in further
considerations instead of the categories. The number and the interpretation
of the clusters as well as the assignment of the categories result from the ex-
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F—coefficient meaning
k<0.1 no agreement
01<k<04 weak agreement
04<k<0.6 clear agreement
0.6 <k <0.8 strong agreement
0.8< k& nearly complete agreement.

Table 1: Different values for the weighted concordance coefficient % and the
respective meaning for intra-cluster agreements of the considered observables

K K K K
database original according according according
clusters PDCDA SSMPD EA
PV 0.334 0.406 0.421 0.397
pro 0.323 0.427 0.466 0.423
PrS 0.479 0.511 0.527 0.513

Table 2: Weighted concordance coefficients & for the original clusters and the
improved cluster solutions.

periences of several psychotherapists which are subsequently evaluated using
conventional statistical methods. This cluster solution should be improved us-
ing the above mentioned techniques. For clustering we used the conditional
probabilities of coupled occurence of the respective categories in large data
bases PY, PRO PES [49]. The clustering results of several methods are com-
pared via an independent measure of cluster agreement which is widely used
in psychotherapy research — the so-called &-coefficient [45]. The &-coefficients
may be interpreted according to tab. 1 [45]. The results are depicted in tab. 2.

As one can see, the SSMPD yields the best solutions whereas the PDCDA
and EA show slightly less significant improvements of the original cluster so-
lution. If one adds expert knowledge into the EA fitness, one yields for the
different cluster problems &y = 0.435, kro = 0.421, Krs = 0.504. Hence, the
expert knowledge yields a better accuracy for the wishes which suggest that
the expert knowledge helps to find minima in a complicated fitness landscape.
This result is in agreement with medical experts stating that the classification
of wishes is the most crucial point in CCRT [33]. For the other cases, the
additional knowledge seems to be an additional restriction.

6. Conclusion and Outlook

Although, at a first glance, the growing number of applications in the field of
biomedicine may seem encouraging, there are still considerable unsolved prob-
lems. In particular, there is a need for continuous research emphasizing quality
assessment, including critical comparative evaluation of competing biosignal
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processing algorithms with respect to specific constraints of given application
domains. In this context, it increasingly becomes clear that knowledge about
neural network theory alone is not sufficient for designing successful applica-
tions aiming at the solution of relevant real-world problems in biomedicine.
What is required as well is a sound knowledge of the data, i.e. the underlying
application domain. Although there may be methodological similarities, each
application requires specific careful consideration with regard to data prepro-
cessing, postprocessing, interpretation, and quality assessment. This challenge
can only be managed by close interdisciplinary cooperation of medical doctors,
biologists, engineers, and computer scientists. Hence, this subject can serve as
an example for lively cross-fertilization between neural network computing and
related research.
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