
Improving Robustness of Fuzzy Gene Modeling

Robert Reynolds, Habtom Ressom, Mohamad Musavi, Cristian Domnisoru

Department of Electrical and Computer Engineering, University of Maine
201 Barrows Hall, Orono, ME 04469

Abstract. This paper proposes modifications to current fuzzy models of gene
interaction. Current algorithms apply all combinations of genes to a fuzzy
model (i.e. activator/repressor/target), evaluating how well each combination
fits the model. The models are susceptible to noisy signals in the gene
expression data. Since the margin of error in current microarray technology can
be high, the results generated may not properly reflect valid relationships. This
paper investigates different methods of creating fuzzy models. We explore
methods of conjunction and rule aggregation that produce valid results while
being resilient to minor changes to model input.

1 Introduction

Any attempt to model or analyze DNA microarray data is likely to be affected by
noise in the data. There are many potential causes for noise, most originating from the
stochastic nature of gene interactions and microarray technology. It has been
demonstrated that the minimum detectable difference between Cy3 and Cy5
concentrations is 1.8 [1], implying an error of up to 29%. Attempting to create a
model from data that is corrupted by such a high noise ratio is extremely difficult.

There are two methods that can be used to improve the modeling of gene
expression. The first is to improve microarray technology to lower the noise ratio.
Variance analysis [2] may also provide more accurate readings and knowledge of
noise ratios. However, some issues, such as the stochastic nature of the process, may
not be eliminated by new technology, and some degree of error will have to be dealt
with. The second approach is to use models that are more resilient to minor variations
in the expression data. In this paper, we will take the second approach to improve the
robustness of Woolf’s fuzzy modeling algorithm [3].

Woolf developed a fuzzy model of a known activator/repressor model of gene
interaction. Using a normalized subset of saccharomyces cervisae data from Cho et al
[4], Woolf’s algorithm applies every possible combination of activators and
repressors for each gene to a fuzzy model. The model output is compared to the
expression level of the gene. Gene combinations are given scores based upon both the
mean-squared error between the model and the target gene and as the variance
between the application of the fuzzy rules over the time period. Those combinations
of genes that have a low error and cover most of the fuzzy rule base (i.e. have low
error and variance scores) are the most likely to exhibit an activator/repressor
relationship. Since the model deals with qualitative terms (such as “High” or “low”)
rather than actual expression levels, it is able to deal with imprecision or low levels of
noise with minimal changes to output. However, as will be shown, Woolf’s model is
susceptible to noise and can result in the creation of inaccurate model outputs.
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2 Algorithm

For a given set of membership functions and fuzzy rules, fuzzy models can differ in
many ways, including fuzzy conjunction (AND) operations, rule aggregation, and
deffuzification. Woolf’s algorithm uses addition for fuzzy AND, averaging for rule
aggregation, and a modified centroid method for defuzzification. As will be shown,
this method produces an unusual output space with sharp gradients in several regions.
We decided to use a few different methods and analyze their output and error
responses. We used Mamdani’s model [5]. Kosko’s Standard Additive Model [6], and
a hybrid model that attempts to take the best attributes of the Mamdani and SAM
models.

Mamdani’s model is a classic model that uses the drastic product (i.e., minimum)
operation for conjunction and a drastic sum (i.e., maximum) operator for rule
aggregation. The model does not provide a set method for defuzzification; it is up to
the model designer to decide the method, which can include mean of median (MOM),
center of area (COA or centroid), or any other method. A minimum operator on fuzzy
inputs makes intuitive sense for gene interaction; the truth value of a particular rule is
going to be bound by the minimally-expressed gene. For example: if an activator’s
expression level is mostly MED and a little HIGH, while a repressor’s expression
level is mostly LOW and a little MED, the rule “If activator is HIGH and repressor is
LOW, then target is HIGH” should be limited completely by the fact that the activator
is not particularly HIGH.

Kosko’s Standard Additive Model (SAM) uses a product operation for
conjunction, a sum operation for aggregation, and the centroid method for
defuzzification. Centroid defuzzification is performed by scaling membership
functions instead of clipping them at the level of rule application.

Our hybrid model combines attributes of the Mamdani's model and SAM. It uses
a product operation for conjunction, a maximum operator for aggregation and a
centroid defuzzification that involves scaling as in SAM.

To analyze the output space of each method, we calculated the output of each
fuzzy system when presented with all combinations of activator and repressor levels
in increments of 0.01. The gradient was calculated using the output surface. The mean
and standard deviation of the gradient matrices for each method was calculated.

To analyze the effect of noise on the fuzzy models, the output of the algorithm in
[3] with the data from [4] was obtained for each method. The output of the algorithms
includes all gene triplets that fit the model well. A Monte Carlo simulation was run on
the gene triplets that fit each model well by distorting each time point by a random
noise percentage and analyzing the result on the model output. Each triplet was rerun
20000 times with maximum distortion set at different levels from 5-30%. The mean
and standard deviation of the model MSE for the 20000 experiments was stored. Each
triplet's average MSE was plotted versus its original MSE. Similar plots were made
for the standard deviation of MSE for each time point. Linear regressions were found
for the average error graphs.

Sensitivity to noise can be related to the regression line; a model is generally less
sensitive to noise if the slope of the regression line is close to 1 and the y-intercept is
close to 0 (i.e. no average change in MSE due to noise). A slope of 1 would imply that
on average, all model outputs would be distorted by the same factor, regardless of the
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original MSE. Minimizing the y-intercept value is also of interest, but is not necessary
for proper operation; if we know that all error scores are offset by the same value due
to error, we can simply raise our error cutoffs to get the same results.

Model validation was performed in a similar manner to Woolf and Wang's
method. Known activator/repressor complexes were checked in the results; known
complexes should appear in the results. We searched for 45 known transcription
factors in the yeast genome and compared the number of times they appeared in the
results to how many of them are present in the dataset; transcription factors directly
affect gene expression, so they should be present in a high percentage of the results.
We searched for the most frequently-appearing gene pairs in the triplets to see if they
exhibit known biological relationships.

3 Simulations

The output spaces for
each of the Woolf and
Mamdani models are
depicted in Figure 1.
The other two models
(SAM and Hybrid) are quite similar to the Mamdani model and are not presented. The
analysis of the gradient of the output space of each model is presented in Table 1.

The highly irregular response of Woolf’s model is reflected in a high average
gradient as well as the high standard deviation; most of the change in output is
localized in small areas of the input space. The Mamdani model has a much lower
average gradient and standard deviation. The Standard Additive Model has a higher
average gradient, but an extremely low change in standard deviation shows that the
model has a more consistent gradient. The Hybrid model appears to be a compromise
between the Mamdani model and the SAM.

Error simulations for 30% noise for the Woolf and Mamdani models are shown in
Figures 2-3. The results for the Hybrid and Standard Additive Models are not
included as their noise response. While they perform better than Woolf response, they

Model Type Woolf Mamdani SAM Hybrid
Mean Gradient
Std Dev of Gradient

10.31
13.68

5.48
4.64

6.57
0.68

6.02
2.88

Table 1: Gradient analysis of the fuzzy models

Figure 1: Output space of Woolf (left) and Mamdani models (right)
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are not as robust as the Mamdani model. A more complete set of error simulation
graphs can be found in [7].

From the graphs, it appears that Mamdani model produces regression lines with a
slope closest to 1 for all potential noise distortions. This implies that, on average, the
primary effect of noise on the model is only to add a constant error offset to the noise-
free error score. The original error score for the inputs (i.e. the noise-free error score)
has little or no effect upon the noise-distorted data’s error score. If the standard
deviation of noise-distorted error score is also low, as is the case with the Mamdani
model, we can say that the majority of gene input combinations are distorted by
approximately the constant error offset. If the dataset’s noise interval can be estimated
[2], one could raise the desired error cutoff by the value of the constant error offset to
obtain the majority of the genes that are likely to fit the model under noise-free
conditions. The other three models (Woolf, Sam, and Hybrid) have regression line
slopes significantly greater than 1, implying that high-error gene combinations will be
distorted by a higher amount in the presence of noise.

The standard deviation of scores around the results from Woolf’s algorithm is
much higher than the other three models.

Figure 2: Monte Carlo error simulations for the Woolf model

Figure 3: Monte Carlo error simulations for the Mamdani model
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Transcription factor
enrichment results are
indicated in Table 2.
The percentages are
derived from the results
of each model with an
error score cutoff of
2000 (MSE of 2%) and a variance cutoff of 20000. The “Ratio of Enrichment” is the
ratio of percentages of results with transcription factors in them to the percentage of
tran-scription factors in the input set (3.97% of the input genes).

All of the models appear to report a disproportionate amount of low-error results
containing transcription factors. However, the Mamdani and Hybrid models appear to
yield a higher percentage of results with transcription factors than Woolf’s model or
SAM. This may imply that these models are better at extracting gene relationships.

The algorithm's output using the Mamdani model was analyzed and compared to
the outputs of Woolf's model. The gene relationships of the HAP1 regulatory network
were found to have similar error and variance scores as indicated in [3]. Most of the
variance scores with the Mamdani model in general, so an increased variance score
cutoff would eliminate the problem. This shows that the Mamdani model has the
ability to find some known relationships. The most common pairs of genes were
found and are summarized in Table 3. ‘A’ denotes an activator, ‘B’ denotes a
repressor, and ‘C’ denotes the target. Most of the gene relationships were obtained
from the Proteome YPD database [8].

The common pairs show us that the Mamdani model extracts many coregulated
pairs of genes. There is no known causal relation between the two, but they appear to
raise and fall with similar profiles of expression. With the use of the min operator for
fuzzy conjunction, it is more likely that changes in one model input or the other will
not change the output. Thus, it is more likely that a particular gene’s expression time
series will have effect on the output compared to another. Thus, we are faced with an
increasing likelihood that frequently expressed pairs are in fact co-regulated and do
not have a causal relationship.

Model Type Woolf Mamdani SAM Hybrid
TF % in results
Ratio of Enrichment

8.96%
2.26

10.53%
2.66

9.43%
2.38

10.51%
2.65

Table 2: Transcription factor enrichment of the fuzzy
models

A B C No. Functions
-
-
-
-

MEP2
-

GLK1
SPO13
HPR5

PUS2
GSC2
PUS2
GSC2

-
HAP1

-
-
-

LEU4
LEU4
ARO3
CAP20
AGP1
CYT1
MSF1
INO2
GLG2

273
156
145
138
127
115
95
94
86

PUS2 alters tRNA-Leu, inhibits LEU synthesis
Involved in different metabolisms.
PUS2 alters tRNA-Tyr, inhibits ARO3 translation
Unknown
Both activated by low nitrogen levels
CYT1 is directly regulated by HAP1
Co-induced in mitochondrial mutant
Both involved in cell division (mitosis/meiosis)
Co-induced during G2

Table 3: Most common gene pairs in results of Mamdani model
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4 Conclusion

We have shown that the use of the standard Mamdani model can improve the
performance of Woolf’s fuzzy algorithm by being more resilient to noise, which is
important in light of high noise ratios in current microarray technology. While we
found that the Mamdani model produces valid results with far less noise distortion, we
cannot say that one model is inherently better than the other without further
investigation. Some fitness measurement for different models needs to be developed
to obtain a relative perspective of model validity. Some heuristics for analyzing model
validity [9] may provide insight into which models are most valid.
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