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Abstract.
In order to explore coding strategies in the retina, we use a wavelet-like transform
which output is sparse, as is observed in biological retinas [4]. This transform
is defined in the context of a one-pass feed-forward spiking neural network, and
the output is the list of its neurons’ spikes: it is recursively constructed using a
greedy matching pursuit scheme which first selects higher contrast energy values.
As in [7], we find invariants in the output for some classes of images, allowing to
code the absolute contrast value solely by its rank in the spike list. An application
to image compression is shown which is comparable to other techniques such as
JPEG at low bit compression.

1 Introduction

1.1 What is the goal of retinal coding?

Despite the intensive research in neuroscience on the retina, image processing strate-
gies haven’t seen any major revolutions that permitted for artificial retinas to compare
with their biological counterparts. So far, it is assumed that the goal of the retinal
coding strategy is to transmit as much information from the �� � photoreceptors to the
brain through the ’informational bottleneck’ of the �� � of axons of the ganglion cells
(GC) which form the fibers of the optical nerve.
Among proposed strategies, dimension reduction (PCA), blind source separation (e.g.
ICA) and sparse coding [4] are the most successful. This last method suggests that the
code could consist of a relatively small number of active spiking GC if they form an
overcomplete basis, but it fails so far to use the temporal aspect of retinal processing.
In fact, this aspect seems crucial and recently, ultra rapid categorization [6] was shown
in humans and monkeys and urged the computational neuroscience community to ex-
plore new coding strategies accounting for the consequences of those experiences. To
gain advantage over the speed of retinal processing, the code should convert the ana-
log intensities into a ’wave’ of spikes in less than ����, the most ’important’ spikes
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being fired first. This defines a new goal for the retinal code: the analog image should
be temporally transformed so that the spike list transmits progressively the most in-
formation with the shortest latency.

1.2 Retinal image processing

Although the retinal neural network is a complex architecture of several layers, the
processes from the light influx detected by the photoreceptors to the potential at the
soma of the GCs are chemical and no spike occur. Therefore, the transform is essen-
tially linear and a typology may be drawn from the response of GCs to light stimu-
lation [5]. Grossly, we model the linear layer of the retina by a layer of localized,
bandpass and non-oriented linear neurons. Their receptive fields are overlapping and
their scales are in general distributed non-uniformly over the retina.
Each GC integrates at his soma this information until it reaches a threshold: it then
emits a spike. This forms the non-linear layer which is generally modelized by an
Integrate-and-fire model where the strongest responses are fired first; the spikes are
then transmitted via the optic nerve: the image code consists exactly on the spiking
times (or latencies) for the different fibers (i.e. GC’s axons).
A possible descriptive algorithm is a wavelet-like transform [2] which output coeffi-
cients would be temporally transformed to a pattern of spikes. Such an algorithm was
successfully proposed by Van Rullen and Thorpe [7] with a nearly orthogonal basis
on a dyadic scale. However, the orthogonality criteria is sometimes hard to fulfill and
means that the algorithm may be sub-optimal for the sparsity of the coefficients and
the separation of the components of the image. Moreover, a dyadic scale is biologi-
cally not plausible and the resulting code is not well suited to group transforms like
translation, rotation and scaling.

1.3 Definition of the article’s framework

Following Olshausen and Field [4], we assume that an approximation � � of an image
� may be calculated as the linear sum of ’patches’ of different sizes and localizations
chosen from a given ’dictionary’ � of GC characteristic spatial weighting functions
��:

�� �
�

���
���� (1)

Minimizing �� � ��� under informational constraints leads to a combinatorial ex-
plosion of the freedom of choice of the subset of � and of the values � � (it is a NP
hard problem [3]). In this article, we derive an algorithm from a spiking neural net-
work model of the retina using a greedy matching pursuit algorithm and we apply it
to the framework of the experiences of Thorpe et al. [6]. Our goal is then to study
the influence of the tuning of the GC norm and also the invariants in the value of the
coefficients according to their spiking rank.
Finally, to illustrate the performance of our coding strategy, we apply our results to
a compression application : after building a simple reconstruction scheme, the code
may be compared to other models -as the popular JPEG format- by its reconstruction
quality in comparison with the compression rate.
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2 Description of the retinal model

2.1 Response of the ganglion cells

For simplicity and given our application’s goal, we will define different scales � and
distribute the neurons’ localizations �� uniformly on a rectangular grid for each scale.
The grid’s spacing depends proportionally on the scale so that the neurons fill the
spatial/frequency scale.
Generally, we write as in [1] the output of the linear layer:

	
����

�
 �� �
����

��
�

����
����

���
���
����

��
� (2)

where ���
� is the light intensity at �
 and �
����

is the receptive field (i.e support) of
�
����

. Also, we deduce the weight vectors �
����

of the GCs as a dilated, translated
and sampled Mexican Hat (see [2, p. 77]) which itself is defined as the normalized

laplacian of the gaussian � : ������ � ��
��
�
�
��� ������ �	
����	��

� �. The norm of

the vectors �
����

are controlled with respect to the scale by �� � ��
����
�:

�
����

���� � ����� ��
�
� � Æ�� (3)

where �Æ�� denotes the translation by ��. At last, the spike latencies are inversely pro-
portional to the integration activity of the neuron �	

����
�.

2.2 Propagation algorithm

First, we determine the first GC cell in the retina to fire:

���� ���� � ArgMax
����

��	
����
�� (4)

and for this index ���� ����, we define the extremal contrast value 	
������

�����. Ac-
tually, we found the best match in the sense of the projection on our basis and we
therefore use a projection pursuit scheme, i.e. we subtract the projection from � � �� � .
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Iterating this steps in time, our algorithm is simply for � 	 �, given the initialization:

��
� ��
� � ArgMax
����

��	
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and 	
��
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This algorithm is exactly similar to the work of Mallat and Zhang [3] (which is re-
viewed in [2, pp.412–419]) for normalized filters (� � � �) under the term Matching
Pursuit (MP). The image code is then given by the spike list �� 
� ��
� with the corre-
sponding value 	 


������
of the extremal contrast value. Finally the algorithm is stopped

at time �� when the contrast is less than a given threshold.
To reconstruct the image we derive immediately

� �


��


��

	


������

�
������

���
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� (9)

which was our goal in (Eq. 1).

2.3 Sparse coding

This coding strategy provides a sparse representation of the signal: in comparison with
a dyadic decomposition [7], the matches are more precise and the choice of a match
is fed back to the coefficients as a lateral interaction proportional to 	 


������
and the

correlation weight 
 �
������

� �
����

�����
�.

Moreover, since the residual image � 
�� is orthogonal to �
������

, then a convergence
theorem is available, namely that its norm converges exponentially to � when � tends
to infinity(see proof in [2, p.414] and Fig. 2 - B).
This result is essential in the context of retinal coding since it means that all the in-
formation will be stored in a few active spiking neurons. This code, which transmits
most active spikes first, will therefore lead to very good information transfer rate even
on very short latencies.

3 Results

3.1 Image reconstruction using the matching pursuit (MP) algo-
rithm

We apply our method to different 128x128 images and, as in [3], we define � � �
��	����
� � � for each scale. The scale grows geometrically with a factor � � �

�
� (i.e.

4 layers per octave) on �
 scales. As in [7], the recoded image is recognizable after
only a few spikes (see Fig. 1 - B) and convergence is fast as of the Mean Square Error
(MSE) (see Fig. 2 - B-a).
We may easily compute the maximum number of bytes necessary to describe the spike
list as 
 � ����
� � ���������	��� � �����
������ where �����
��� is the number of
quantization levels for the contrast. Moreover, if ������ is the number of pixels in the
image, ����	��� �

���	
��
�����

. Numerically, the information rate is � ���� byte/spike.

3.2 Weighted matching pursuit

Experimental data on natural images show that their spatial power spectrum obey to
some invariants [1] and that we may find a priori a whitening filter so that the filters’
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A B C D E

Figure 1: Different reconstruction of Lena for a given file size of 2000 bytes. (A) Detail
of the original 128x128 image; reconstruction using (B) MP; (C) MP with Look-Up-
Table; (D) Weighted MP; and in comparison with (E) JPEG (Quality 32)

output would be sphered accross scales. Using the work of Olshausen and Field [4]
we propose that:

�� �
�

�
�	
������������� (10)

where experimentally �� � ��� cycles/picture.
This alternative to the case where the filters are normalized shows that we may tune
each GC so that the propagation doesn’t favor any scale in particular in time. In our
case, we observe that the reconstruction is similar (see Fig. 1 - D) but that less low
spatial frequency spikes were sent first, the spike list is less predictale and its entropy
is enhanced. A face recognition application should therefore use this tuning.

3.3 Invariance of the contrast value: Rank Order Coding

As in [7], we observe a relative invariance in the absolute value of the contrast in
function of the rank of the spikes across natural images. This leads to a even better
strategy of compression: the rank and the polarity (ON or OFF) of the contrast are
enough to code the contrast value as it is given by a ’look up table’ (see Fig. 2 -
A). Therefore �����
��� � � and numerically, the information rate shrinks to � ����
byte/spike.
The reconstruction is very similar (see Fig. 1 - C) and the MSE converges similarly as
the case where we use the exact value of the contrast (see Fig. 2 - B- curve a).

Conclusion

We have proved that we may define a code based on a dictionary of ganglion weight
vectors and that this code is efficient and sparse as is observed in the retina. We’ve also
shown that tuning the scale sensibility according to the statistics of the natural images
and using rank order coding led to a very efficient coding strategy which compares to
image processing standards like JPEG. Therefore, this may be a strategy used by the
retina especially for low bit compression and fast image transmission.
Its biological plausibility and high performance demonstrate that such temporal pro-
cesses may be crucial in the retina. Finally, it advocates for the use of Support Vector
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Figure 2: (A) Look-Up-Table : mean and variance of the absolute contrast in function
of the relative rank for a database of 100 natural images (B) Comparison of MSE in
function of the file size (in ����) for the different methods : (a) MP; (b) MP with
Look-Up-Table; (c) JPEG at different qualities.

Machine algorithms and for a hierarchical feed-forward architecture. This work is
therefore a first step before the implementation of the algorithm to a layer of orienta-
tion selective neurons (layers V1 and V2) and then to layers V4 and MT with more
’abstract’ dictionaries.

Online simulations

http://laurent.perrinet.free.fr/code/retina.html
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