ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 269-274

Segmental Duration Control by Time Delay
Neural Networks with Asymmetric Causal and
Retro-Causal Information Flows

Caglayan Erdem, Hans Georg Zimmermann
Siemens AG , Corporate Technology, D- 81730 Munich, Germany

email: {Caglayan.Erdem,Georg.Zimmermann}@mchp.siemens.de

Abstract. The generation of pleasant prosody parameters is very
important for speech synthesis. A Prosody generation unit can be seen
as a dynamical system. In this paper sophisticated time-delay recurrent
neural network (NN) topologies are presented which can be used for the
modeling of dynamical systems. Within the prosody prediction task left
and right context information is known to influence the prediction of
prosody control parameters. This can be modeled by causal-retro-causal
information flows [1]. Since information being available during training
is partially unavailable during application, there is a structural switching
from training to application. This structural change of the information
flow is handled by two asymmetric architectures. These proposed new
architectures allow the integration of further a priori knowledge. By this
we are able to improve the performance of our duration control unit
within our text-to-speech (TTS) system Papageno.

1 Introduction

Our acoustic prosody module consists of a duration control and a fO-contour
unit. Both are modeled by NN (see [2]). There are also rule based duration
control methods [3], which depending on rules modifies the duration of a seg-
ment by a multiplicative or additive scaling factor. Appropriate segmental
durations are very important for a natural sounding synthetic voice. A du-
ration control module with low performance has a very strong impact on the
f0-contour unit. Similar to the fO-contour prediction task [1] the duration con-
trol unit uses left (past) and right (future) contextual information to establish
the prediction. The left contextual information is the text being already read
while the right contextual information is given by the text to read next. A
segmental duration module has to control the rhythm of a synthetic voice and
the known effect of final lengthening. So local and global structures have to be
mapped. The state-of-the-art causal-retrocausal modeling was presented in [1]
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for the fO-prediction task. The shortcomings of that architecture are a fix-point
recurrences causing stability problems during training, and a non-observance
of the mentioned structural switching. The causal-retrocausal-error-correction
(CRCEC) NN architecture is used as a basis for the modeling of the dura-
tion control task. Different architectures will be presented to overcome these
problems.

2 CRCECNN

The CRCECNN architecture is depicted in Fig. 1 for one time step (solid lines).
This architecture uses shared weights and has a symmetrical extension to the
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Figure 1: Causal-Retro-Causal Modeling.

neighboring time steps (dotted lines). As can be seen there are two different
information flows. In the upper part of Fig. 1 there is a causal information flow
denoted by the matrix A carrying state information (sy;) of the dynamics
between neighboring state clusters. This path allows the mapping of long-
term forecasts. A retro-causal information flow (r:4;) is given by the matrix
F' in the lower part of this Figure. Within each time step i there are two
error-correction (see [4]) parts incorporated. Both are coupled by the usage
of one output cluster (z¢4;). The error-correction will be explained using the
causal information flow path. While matrix B introduces external information
ug to the system, the matrix C transforms the state s; to its expectation y;.
D propagates the model error (the expectation y; being compensated by the
observation y{!) to cluster s;y1. The path

st,1—>C—>zt,1—>D—>st

allows to map local structures as shocks or short term effects. The z-clusters
represent the output clusters of the NN architecture. In cluster z; the differ-
ence z;= Cs; - yf (forecast error) between the expectation of the NN and the
observation y{ is computed. Note that y¢ is propagated by —Id to z;. This
difference has its optimum in zero, since this denotes no forecast error. Hav-
ing no forecast errors results in a perfect description of the dynamics. So the
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target vectors (zt4;) are set to zero during training. If there is no mismatch
between expectation and observation then no further information is propagated
by matrix D to state s; and we almost obtain a simple finite unfolding NN.
An existing mismatch delivers further input information to state s;y1. This
information is used during training for the adaption of parameters. By this
error correction principle we obtain in z; an internal vector driving the tran-
sition of the system state together with external input u; and previous states.
These internal vectors generate the error flow. It is computed at each output
cluster time step of the unfolding. If the internal autoregressive part coded in
A and all external driving forces of a dynamics are known, it would be possible
to give a perfect description of the dynamical system. But if it is not possible
to identify the dynamics due to missing or unknown externals or noise, the
last model error is an indicator of the models misspecification. Since the model
error is used as a measure of unexpected shocks, the learning of false dependen-
cies is lowered and models generalization ability is improved [5]. Incorporating
information flow from the right to the left captures retro-causal dependencies.
If this is handled symmetrically over all time steps this modeling results in fix
point recurrencies as depicted in [1]. One closed loop is given by:

$4—~>C—>zt—>FE—ri—H—2z_1—>D— s

CRCECNN optimally fits to the information flow of the application, but makes
training hard to solve. So substructures are to find, which overcome the closed-

loop problem. Therefore this paper proposes a partial symmetric expansion in
the following subsection which results in a partial CRCECNN (P-CRCECNN).

3 P-CRCECNN

The NN depicted in Figure 2 utilizes shared weights and finite unfolding. The
coupling of both information flows is realized by only one output cluster z;
instead of the coupling at each time step within CRCECNN. By coupling
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Figure 2: P-CRCECNN

those information flows within the present time step this new architecture does
not contain fix-point recurrent loops, which might cause instabilities during
training. In the following this architecture will be used for further adaptations.
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4 Structural Switching

The structural switching will be explained using Fig. 2. During training all
segmental durations modeled as observations y{, ; are known. But within the
application there are no observation available for ¢ > 0, because they are not
predicted yet. For i < 0 predictions of the NN are re-utilized as observations.
Because of this mismatch between training and application the retrocausal
information flow has to be treated in a specific way. In the following two
different ways of asymmetric P-CRCECNN are explained which overcome this
mismatch. In Fig. 3 the idea of removing connections after training is depicted.
The dotted connections C* and DF are trained. So the architecture is the same
as depicted in Fig. 2 during training. But within the application connections
C*! and D® are removed. The resulting architecture is then a finite unfolding
in time without the error correction principle for the retro-causal information
flow during application. The next architecture is established by using finite
unfolding in time for the retro-causal path during training and application as
shown in Fig. 4.

@ 00 @
&A)c
Dt
-Id -1d
@ F E
42

Figure 4: P-CRCECNN _finUnfold

5 Application and Results

In this section the application of asymmetric P-CRCRECNNSs within the seg-
mental duration control unit of our acoustic prosody module is presented.
These data-driven methods are applied to recordings of three hours of a ger-
man news speaker reading news from Frankfurter Allgemeine Zeitung. The
patterns for training (80%) and testing (20%) are separated. A validation set
of (20%) is selected randomly from the training set. This database is the same
as used within the fO-generation task [1]. The f0-generation task utilized pat-
terns organized on syllable level. But within this task patterns are organized
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on triphone level. Following information is presented to the NN in a context of
seven phonemes to the left and right.

a) phonetic information: with one-out-of-n coding the phoneme index is pre-
sented here. A phoneme-set of 45 phonemes is used. Additionally the four
phoneme classes (vowel, fricative, nasal, liquid, and plosive) are presented here.
b) positional information: Discrete information denotes whether the according
syllable is an initial, medial or final one within the phrase and the word. Con-
tinuous information is given by the relative syllable position within a sentence
and phrase.

c) stress information: Flags denoting the stress type of the according syllable
are coded here. Word level stress is presented by four flags. Sentence level
stress consists of two stress marks.

d) linguistic categories: An one-out-of-n (set of 14 categories) coded linguistic
category denotes the category type of the according word.

These inputs are presented at each time step of the unfolding clusters denoted
by u;y;. The according output vectors are modeled as observations and are
presented at each time step in the clusters denoted by ygﬂ_i.

| NN | MSE in % | correlation | marks |
P-CRCECNN_removed 3.49 0.8723 3.5
P-CRCECNN._finUnfold | 4.35 0.8232 2.5

Table 1: results

Target values for the NN are normalized to ensure an optimized signal-flow
during training of the NN due to tanh-activation-function within the causal
and retro-causal state clusters. A first normalizing of segmental duration is
obtained by the mean and standard deviation value from the used triphon
classes. A second normalizing was necessary to ensure an optimized signal
flow during training of the NN. The mean and standard deviation were derived
from the first normalized segmental durations. CRCECNN are hard to train,
therefore we changed our intention to train only cut down architectures. For
evaluation the trained NN were used to predict segmental durations of sen-
tences which were in the test set. Three audio-files are generated with those
predictions which are then used for evaluation. In table 1 the mean square
errors (MSE) are given for the two asymmetric NN realizations and it depicts
the correlation of the predictions and the original segmental durations. Within
both experiments the P-CRCECNN_removed method gives better results. In
a further test it was observed that 85.6% of phrase-breaks were realized with a
clear final lengthening. As perception is a highly complex process not necessar-
ily modeled appropriately by isolated physically distances, informal listening
test were performed. Files generated by resynthesis utilizing the three different
methods were presented to seven non-expert listeners. They had to judge which
of the presented files were most pleasant and least pleasant to them. They also
had to give a ranking. This ranking was then scaled on a value set from 4 to

OA triphone is a phoneme considering its predecessor and successor phonee. So same
phonemes with different predecessor or successor result in different triphones
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1, with 4 denoting the most pleasant file. The mean values of the ranking are
shown in table 1. The asymmetric P-CRCECNN with connections removed
after training was evaluated to be most pleasant. This architecture uses the er-
ror correction principle within the retro-causal path for modeling local prosodic
structures. This seems to help the long term forecast path improving its gener-
alization ability, as this NN performs better than the P-CRCECNN _finUnfold,
which does not utilize error correction. The long term forecast path within
P-CRCECNN _finUnfold has also to capture short time events.

6 Conclusions

In this paper specialized error correction NN architectures are presented. First
a partial CRCECNN is proposed to overcome closed loop computation prob-
lems. Afterwards a structural change of the information flow from training to
application is described and integrated into modeling of the NN. Two asymmet-
ric NN architectures are presented to overcome this structural switching. They
are applied within the duration control task of our TTS system Papageno. The
best performing NN is selected by numeric and listening experiments. Informal
listening tests show that an asymmetric architecture improves performance. A
sophisticated architecture with connections trained but removed afterwards
during application delivers most pleasant prosodic parameters, as this archi-
tecture is the closest one to the information flow of the duration control task.
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