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Abstract. First, neural networks have been inspired by cognitive pro-
cesses [30, 16, 41]. Second, they were proved to be very efficient comput-
ing tools for engineering, financial and medical applications [15, 9, 18, 10].
In this article we point out that there is still a great interest, for both
engineering and cognitive science, to explore more deeply the links be-
tween natural and artificial neural systems. On the one hand: how to
define more complex learning rules adapted to heterogeneous neural net-
works and how to build modular multi-network systems for modeling
cognitive processes. On the other hand: how to derive new interesting
learning paradigms back, for artificial neural networks, and how to de-
sign more performant systems than classical basic connectionist models.
After a short survey of connectionist models for modeling memory, we
develop two case studies. The first is a model for a multimodal associa-
tive memory and the second is a model for more deeply understanding
the mechanisms of spatial cognition'.

1 Contribution of models to cognitive science

Artificial neural networks are born from the idea that the brain is the most
efficient computational device for solving complex problems. Engineers inspired
themselves from brain processing and used, with the success that we know,
neural computation to build efficient algorithmical solutions for classification,
regression, prediction, pattern recognition, etc. Nevertheless, artificial neural
networks also have the power to help us investigating the mysteries of human
brain mechanisms. Cognitive science has the aim to understanding how the
brain works. This young science proposes theories, most of the time coming
from experiments on human or animal. Building and running a connectionist
model can help in many ways. First, translating a theory made of words, or of
boxes and arrows, into a model that can be simulated by a machine forces the
theory to be very specific, and to detail every point. This makes the theory
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clearer and more complete. Second, if the model cannot tell us that things
work in a certain way, it leads to eliminate impossible solutions, and helps to
test the “computational feasability” of a theory. Third, it can highlights which
part of the input information is the most crucial to realize a cognitive function.
Fourth, a model allows to perform complex experiments, that cannot be realized
in real world. For example, connections between neurons can be cut to simulate
a precise brain lesion, hard to find in natural neural networks and impossible to
make in reality. All the properties observed on the models can drive scientists to
reconsider their theories, or to build new ones. As instance of model bringing
new theorethical ideas, let us cite the classical work by Hinton and Shallice
[19] on acquired dyslexia which is exemplary now. They showed that their
lesioned network exhibited an error pattern resembling deep dyslexia, and that
this pattern could come from a lesion anywhere in their system, which was an
innovative idea, questioning the mainstream theory, which is now abandoned.

2 Connectionist models for modeling memory

Since memory can be considered as a central point in many brain processes, it
is the object of numerous studies and models in cognitive science. The idea of
understanding memory as an heterogeneous system is present since the nine-
teenth century [8]. Several decompositions have been proposed in the last forty
years [3, 1, 11, 42, 45, 49, 43]. The computational approach of cognitive psy-
chology aims to define sub-systems contributing to realize each processing step
required by a system (e.g. visual system) for achieving a given task [29, 2],
but most of the time, this “computational approach” is not confirmed by sim-
ulation of models on computers. Moreover, models usually handle symbolic
representations and are very far from the neurophysiological level of cognitive
processing. Connectionist models of the literature (e.g. Hopfield networks,
Multilayer perceptrons, Kohonen maps) are too simple for modeling memory
(even specific aspects of memory), but more complex learning rules can be de-
veloped or modular multi-network systems can be built for modeling cognitive
processes. In [48], Tiberghien proposed a classification of connectionist models
for modeling human memory:

e Connectionist models (i.e. neural networks), such as distributed auto-
associative memories (recurrent networks) for simulating the other race
effect in face recognition [36, 51] or multilayer perceptrons, with adapted
architecture and learning rule, for face identification in context [44] ;

e “Neo-connectionist” models, based on convolution and correlation, for
simulating the failure in recognizing informations, even if they can be
recalled, without hidden units [14, 34] or with hidden units [20] ;

e Hybrid models, or “symbolico-connectionist” models, that integrate neu-
ral and symbolic processes, in different ways [47], taking into account
the different levels of processing (fast and automatic recognition vs. slow
and controlled information processing), such as using knowledge in text
understanding [22].
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As alast example, Miikkulainen [31, 33] modelized the episodic memory, i.e.
the memory of autobiographical episodes (like a first day at school or a wedding
day). They adapted classical Kohonen map algorithm, and built a hierarchical
model, from several feature maps representing memories to be encoded and
stocked memories. The model exhibits a behavior facing “memory overload”
similar to the human one : old memories fade away, but singular ones still
remain. The model is an associative memory, and recall of the memory can
be obtained from a partial sensory clue (eg: Proust’s madeleine). The model
also allows to make hypotheses on the order of magnitude of the number of
real neurons and connections needed to store memories over a human lifetime
in the hippocampal memory system.

After this short survey, next sections develop two case-studies. The first
is a model of multimodal associative memory, binding sensory modalities, and
the second is a model for more deeply understanding the mechanisms of spatial
cognition.

3 Modeling a multimodal associative memory

3.1 Memory model, in cognitive psychology

In real life, both for human and animal, the perception of objects, in their
environment, often involves more than one sensory channel. It has been proved
that human ability for pattern recognition takes advantage of fusioning data
perceived from different modalities, e.g. speech perception is enhanced by the
vision of speaker’s face [46].

Identification
-<—— Property lookup Visual attention shifting

Pattern <——— Attention stimulus-based

ivati i attention shifting
Associative actlvﬁatlon window
memory
Pre- Visual
processing Visual buffer stimulus

Figure 1: Simplified diagram of a functional architecture for visual perception

This section presents a model for data fusion, based on cognitive psychol-
ogy. Starting from a functional architecture for high-level visual perception
proposed by Kosslyn and Koenig [26] (figure 1), we assume, with psycholo-
gists, that similar architectures hold for other sensory modalities. In such a
functional architecture, the treatment starts by a temporary storage of the
stimulus in a memory buffer in which an attentional window selects a part of
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the input. Then, the stimulus is pre-processed and compared to representations
previously met and stored in a pattern activation subsystem. In case of good
matching between the stimulus and a stored pattern, the input is recognized.
This low-level part of the system is specific to each sensory modality. After-
wards, a global associative memory receives all the outputs coming from the
different sensory perceptive subsystems, and associates them to an abstract
representation. If this representation is sufficiently close to a representation
stored in memory, then the object is identified. This high-level part of the
system is multimodal. In case of failure of the identification step, feedback
loops allow top-down processes from associative memory back to modality-
specific modules, and help to solve remaining ambiguities.

3.2 Connectionist modular network

A connectionist modular network has been built, from several basic bricks,
for modeling this multimodal architecture of associative memory [13]. Several
samples of an artificial “Incremental neural Classifier” [4, 38] simulate both
pattern activation subsystem (InC1 and InC2, one modality-specific classifier
for each modality) and identification (InC, an output classifier). The InC model
has the property to create prototypes during its learning phase, according to
two hyperparameters (a confidence threshold and a confusion threshold). In
generalization phase, InC is able to evaluate the confidence of its response,
and to give a none answer in case of doubt. The multi-modal associative
memory is simulated by a “multiple Bidirectional Associative Memory (m-
BAM)”, a recurrent network derived from Kosko’s Bidirectional Associative
Memory [23], with several input vectors, the low layer being divided in sub-
layers. The m-BAM learning rule has been adapted from Oh and Kothari
PRLAB algorithm [35].

modality 1 . " X Multiple BAM
: modality specific InC 1 F# BAM input layer 1 o
of theinput " Identification
: BAM output layer %«{ output InC
moddity 2 — - : correct
: modality specific InC 2 F# BAM input layer 2 § wrong
of theinput : i none

Property Lookup (PL) feedback mechanism

Attention Shift (SA) feedback mechanism

Figure 2: A two-modalities implementation of the system, with feedback loops

The whole model is presented in its two-modalities version on figure 2. The
input object is taken as a set of modal inputs (e.g. its image and its noise, for
a bi-modal object). Each modal input is sent to a modality-specific classifier
to be recognized. Classifiers are trained to associate several representative
“prototypes” to each category. Thus, each classifier outputs the prototype
that best matches its input to the corresponding input sub-layer of the m-BAM;
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however, if a classifier doubts, a random pattern is sent to the sub-layer. When
m-BAM inputs are fed, either with a prototype or a random pattern, the m-
BAM reaches a stable state after a finite number of iterations, and an abstract
representation of the object is obtained on the BAM output layer. Then, the
output classifier tries to identify the object. If the output classifier doubts, the
object is un-identified. Depending on the source of the problem, e.g. one or
several modalities un-recognized by one or several modality-specific classifiers,
a suitable feedback mechanism re-processes the object in order to simulate
either the property lookup loop or the attention shift loop of the psychological
model (cf. figure 1). The feedback algorithms have been implemented by ad-hoc
algorithms, in the model.

3.3 Discussion

First, the computational feasability of the model has been successfully tested
on objects with two modalities. Both modalities were character images, letters
for one modality and numbers for the other one [39]. The relevance of the
multi-modal architecture and of feedback mechanisms has been checked: the
data fusion realized by the multimodal associative memory get a measurable
performance gain for the model, feedback mechanisms significantly improve
the success of identification, the model is able to simulate the phenomenon of
mental image evocation [13]. Second, the model has been tested with three
modalities and more realistic inputs (visual, auditory and tactile - via Braille’s
coding - perception, for the first five vowels in the french alphabet). Experi-
ments proved the robustness of the model, even when one or two modalities
are missing in input [37]. Third, the model has been placed in a virtual robotic
environment. Thanks to the specificity of each modality, the virtual robot cor-
rectly identifies object, even at large distance. When a modality is missing
(e.g. at night) or too noised (the object is too far) the system still shows good
identification performance. Furthermore, it can identify the object while one
of the modalities is incorrectly recognized, e.g. seeing an object while hearing
another one. This example shows that a multisensory robot can take advantage
of a two-step model based on cognitive theories [40]. Moreover, the model can
be useful for engineers, as a model, based on local learning and data fusion,
able to process multi-instance data, even in case of missing data (cf. [12]).

4 Model for understanding spatial cognition

Within the occipito-parietal pathway of the visual system, whose role is to
infer the position of objects, two subsystems have been identified: The cate-
gorical encoding subsystem and the coordinate encoding subsystem. While the
former places objects in space with categories such as “above/below” or “in-
side/outside”, the latter uses precise measures to encode the position of objects
[50]. This section describes how a mixture of experts has been used to model

the interaction of the two subsystems, CAT and COO.
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4.1 Hemispheric specialization for CAT and COO tasks

Kosslyn [24], carrying out a computational analysis of high level vision, pos-
tulated the existence of two types of spatial relations, the categorical and the
coordinate spatial relations, and thus two distinct subsystems to encode them.
To test this hypothesis, different paradigms have been designed. One of them,
proposed by Hellige and Michimata [17] consists in presenting to the subjects
an horizontal bar and a dot, which can be at either one of three positions above
the bar or one of three positions below the bar. With such stimuli, two tasks
are possible. In the categorical task (CAT task), the subjects are asked to de-
termine whether the dot is above or below the bar, thus requiring a treatment
of the categorical subsystem. The coordinate task (COO task) consists in ask-
ing the subjects whether the dot is closer or further than a certain distance
(3mm) from the bar, thus requiring a treatment of the coordinate subsystem.
The stimuli are shown either in the right visual field (hence processed by the
left cerebral hemisphere, LH) or in the left visual field (processed by the right
visual field, RH). Analysis of the results showed that the CAT task is real-
ized faster when the stimuli are presented in the right visual field (processed
by LH) than when they are presented in the left visual field (processed by
RH). Results obtained from the COO task showed the opposite pattern. Other
experiments [27, 5] gave similar results, showing a predisposition for the left
hemisphere to process the categorical spatial relations and a predisposition for
the right hemisphere to process the coordinate spatial relations. It has been
argued that this difference could be due to the use of neurons with different
sizes of receptive field (RF) [25]. The RF of a neuron is defined by the area of
the visual field in which the presence of a stimulus triggers a reaction of the
neuron. Neurons with small non-overlapping receptive fields may be used to
define the categories, while neurons with large overlapping receptive fields pro-
vide a coarse-coding that can precisely encode distances. This precise point has
been confirmed by a connectionist simulation [28]. In multilayer perceptrons,
we included the tuning of receptive fields in the parameters to be learned by
back-propagation. The value of this parameter o converges towards two differ-
ent values, according to the task to be learned by the network: o = 0.763 for
the CAT task and o = 1.56 for the COO task.

Moreover, many experiments (e.g. fMRI records) have shown that the pre-
disposition of the right hemisphere for processing the coordinate task may
disappear while the left hemisphere becomes better and better. It has been
proposed that this practice effect is due to the development of new categories
(such as “near/far” in the case of bar and the dot) by the left hemisphere
[27, 7, 5], which becomes able to process the coordinate task in a categorical
way. Next section proposes a model which helps to validate this explanation
to the practice effect observed on human subjects.
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4.2 Mixture of experts for modeling the practice effect
4.2.1 Architecture of the model

For modeling the practice effect, the mixture of experts, proposed by Jacobs et
al. [21], appeared to be the most suitable connectionist model. A mixture of
experts is composed of several expert modules and a gating node. Expert mod-
ules are in competition, each of them receiving the same input and proposing
an output. The gating node receives the same input also and gives as output
one probability to each expert module. These probabilities are interpreted as
measure of confidence in the outputs of the expert modules. For a given input,
the output of the expert which receives the higher probability is chosen to be
the response of the mixture of experts. The learning rule proposed by Jacobs
et al. is adapted from backpropagation. At the end of the learning procedure,
each expert becomes specialized in a part of the set of inputs. For modeling
the competition between CAT and COOQO processing, we have implemented a
mixture of experts, with two expert modules, the CAT module being designed
to model the categorical subsystem, and COO module being designed to model
the coordinate subsystem (see Figure 3).
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Figure 3: Architecture of the mixture of experts for modeling the practice
effect.

The CAT module is a multilayer perceptron, with two hidden layers and
small receptive fields. The weight between the ith neuron of the input layer ar;d
the jth neuron of the first hidden layer is determined by w;; = & - 6_%,
centering each neuron of the hidden layer on one neuron of the input layer,
with decreasing influence of its neighbors. The decrease rate is fixed by o: The
greater o, the larger the receptive field. For the CAT module, ¢ has been fixed
to 0.8. The COO module includes a similar architecture, with larger receptive
fields, since o has been fixed to 1.5. Moreover, in order to take into account
the fact that people performing a coordinate task use the distance evaluation
skill they have acquired all along their life, the coordinate module has been
provided with a similar initial knowledge. Therefore, a third and a fourth hid-
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den layers have been added to the COO module. The upper subnetwork has
been previously trained by backpropagation to measure the distance between
the bar and the dot. The output layer of this subnetwork acts as a thermome-
ter : the number of activated neurons indicates the distance between the bar
and the dot. During the learning phase of the mixture of experts, weights of
connections of this subnetwork remain fix.

The gating node is a multilayer network with one hidden leayer and two
output units, giving the probability for each of the expert modules to be chosen
as the output of the mixture of experts. The two outputs of the gating node
must sum to 1. Therefore, each neuron calculates its activation (@.qt and aco,)
and communicates it to the other (there are lateral connections between the
output neurons). Then each neuron calculates its output (peat and peoo,) from
both activations [32] :

eﬂcat eﬂcoo

Pecat = and  Peoo =
Qcat + Qcoo Qcat + Qcoo

4.2.2 Experiments and results

Previous multilayer network simulations [25, 6] for studying the categorical
and coordinate subsystems have based their learning set on the bar and dot
paradigm of Hellige and Michimata. The bar is represented by 3 adjacent active
neurons, and the dot by one active neuron. The dot can be place between 2
and 9 neurons from the bar, above or below (see Figure 4). To avoid an effect
of correlation, the bar can take 29 different positions. Hence the input layer
has 49 neurons. For each position of the bar the dot can take 16 different
positions, resulting in a database of 464 input vectors. The COO task consists
in deciding whether the dot is placed at more or less than 5 positions from the
bar. Hence the expected output associated to an input vector is +1 if the dot
is at more than 5 neurons from the bar, —1 otherwise.
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Figure 4: Input patterns for the mixture of experts model

The learning rule proposed by Jacobs et al. is not suitable for our model.
The purpose of the model is no longer to partition the input space, specializing
each expert via the gating node decision. The phenomenon to be explained
is the practice effect of the COO task on the activities of the CAT and COO
subsystems. We start from the hypothesis that the CAT subsystem develops
new categories from examples and that the task is processed mainly by the COO
subsystem until this new categories become sufficiently well defined. Under
this assumption, what we expect to observe is a dynamic in the attribution
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of the probability by the gating network that reflects the development of new
categories by the CAT module, transfering the preference towards the CAT
module, to the detriment of the COO module, when the task is repeated.
Therefore, the two experts modules are trained by a classical backpropagation,
in order to make them learn the task (i.e. learn the critical distance, for the
COO module, and develop new categories for the CAT module). The gating
network is trained by backpropagation as well, but the error to be minimized
depends on the progress of the development of new categories. The function
to be minimized by the algorithm is F.,¢ for the CAT output and E.,, for the
COO output:

1 1 > 1 k- (Sq— Sea)? \°
Epp = —- - - E. - .. _ f(0d = Seat)”
cat 2 (acat e+ (Sd — Scat)2> coo 2 (acoo et (Sd _ Scoo)2
where Sy is the expected output of the model, S.,, and S..+ are respectively

the outputs of the coordinate and the categorical modules, and € and k are
constants.

Categorical Module

Coordinate Module
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Figure 5: Evolution of probabilities attributed by the gating node to the CAT and COO
modules

A mean of the tests performed on 20 networks, with a training procedure
of 600 epochs, is shown in Figure 5. The model behavior is similar to the ob-
servations of psychologists. At the beginning of the procedure, the output of
the COO module, due to its initial knowledge, is prefered by the gating node
to give the answer of the model. But as long as the CAT module develops
new categories, the gating node attribute larger and larger probabilities to its
output, reflecting the practice effect observed in cognitive psychology experi-
ments. This result argues in favor of validating the hypothesis that the reason
why this practice effect is observed is that the CAT subsystem develops new
categories. Although the model has proved the functional plausibility of this
hypothesis, it would remain to develop more biologically plausible models to
more deeply investigate the understanding of the cognitive process of spatial
cognition.
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5 Conclusion

This article has proposed a short survey and two case studies illustrating how
neural networks can be usefull for modeling cognitive processes and how in-
spiration coming from human brain can still improve connectionist models for
engineering. It is clearly admitted that modular connectionist networks and
hybrid models are more powerfull than classical neural networks, but their
design is still complex and even hazardous. Starting from theoretical models
proposed by psychologists and neurobiologists can help in many ways. How-
ever, the task remains hard, since the developer has to study the connectionist
literature in order to find the best suitable neural networks as basic bricks, to
adapt their learning rules to the situation or to the phenomenon to be modeled,
to define and to implement cooperation algorithms between the modules. All
these points have to be meticulously examined, otherwise the models are not
functional and cannot be efficiently simulated on computers. In conclusion,
involving neural networks in cognitive science is a challenging research area
and can bring many advantages both to cognitive science and to connectionist
models.
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