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Abstract  Recent research uncovers that goal directed sensorimotor behaviour is
governed by negative feedback of positional error, and by feedforward through inverse
modelling of the limb’s dynamics. Thereby, forward models seem to provide the
kinematic state of the limb. The question addressed in the paper is, how the neural
network representing the inverse model can be trained. Because in this case an error
based learning algorithm seems to be unavailable, an alternative non error based
method called auto-imitation is proposed. It is demonstrated, that, if combining a
special type of neural network (the power net) with a modified type of a Hebbian
synapse, the inverse dynamics of an onejointed arm can be precisely identified using
auto-imitation. This holds for a simulated arm and a real robot arm as well.

1.   Introduction

Living on shore confronts with the problem of defending posture against gravition
while performing voluntary movements. Nowadays, the general solution suggested
for those sensorimotor problems are formulated in terms of control theory which pins
negative feedback and feedforward by internal models  (inverse and forward models)
as the essential units thought to govern movement control. Fig.1 shows a typical
diagram characterizing the state of affair (Sabes, 2000).

A very crucial point in this discussion is, how these inverse and forward
models can principally be acquired by neural networks. With respect to sensorimotor
behaviour, living systems don’t have an external teacher. Who else does provide the
error necessary to train and update respectively the neural networks representing such
internal models? Regarding the forward model, the answer is easy: The actual state of
the arm, sensorily picked up, can be taken as the target value, and the difference
between this target and the actual output of the respective network is the error, which
can be used to train the network by supervised (i.e. error based) learning.

The model of fig.1 which primarily serves to explain principles of motor
control seems also to provide a recipe „to drive adaptation of the inverse model“
(Sabes 2000 p. 742): The „current motor error“ E‘ as indicated by the dashed arrow
crossing through the inverse model appears to determine also the inverse model’s
updating. However, E‘ does not represent the true network error, because it is not
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expressed in terms of the network‘s output Uff. Furthermore, E‘ is determined not
only by the state feedback caused by the output Uff of the - possibly maladapted -
inverse model, but also by the signal induced by the negative feedback controller’s
output Ufb. Therefore, if the network representing the inverse model would be trained
using that E‘ it would be trained with a faulty error signal. This cannot be a good
solution for the problem to acquire the inverse model, nevertheless there seem to exist
training methods, for instance learning by „feedback error“ (Kawato, 1990), which
finally – after thousands of training trials – may lead to an acceptable inverse model.

Figure 1: „Schematic diagram of the internal models used in controlling multijoint arm
movements. The desired motion of the Arm X* is fed into an inverse model of the arm, which
acts as a feedforward controller, producing a command signal Uff. There is also evidence for
late influence from a feedback control signal, Ufb. The two commands are combined, through

simple addition perhaps, to yield the final control signal U. The feedback pathway is illustrated
in grey to reflect the fact that it plays a subordinate role as a result of feedback delays. The true
state of the arm, X, is estimated with a combination of the visual and proprioceptive feedback.
The state estimate, X‘, serves as input to the inverse model and is also compared to the desired

state to yield an estimate of the current motor error (E‘). The latter signal is used both in
feedback control and to drive adaptation of the inverse model (dashed arrow).“ (Sabes, 2000).

2.   Auto-Imitation as a learning algorithm not based on error

An alternative solution to that of fig.1 is to apply a non error based algorithm for
learning the inverse model. An appropriate algorithm, as proposed by Kalveram
(1981) or Jordan (1988), can be developed in the framework of the re-afference
principle (Holst and Mittelstaedt 1950). The algorithm, later on also called „auto-
imitation“ (Kalveram, 1992), is outlined in fig.2 using an onejointed arm movable in a
plane as given in (1). In the learning phase, the output of the network going to learn
the inverse model is not connected to the input u of the plant. The plant‘s input are
arbitrary torques ufb caused by the pattern generator operating like a "blind teacher".
This makes the arm attain the related values of angular acceleration, velocity and
position x at the elbow joint according to the differential equation
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with  J= moment of inertia, related to the joint, B= coefficient of viscous damping,
K= joint stiffness of the arm, x0= angle defining the momentary mechanical equi-
librium point, m= mass of the arm, a= distance between center of mass and joint,
Q= disturbing torque from non-systematic external sources, g= graviational constant
(9,81 m/s2 resp. N/Kg), xg= angle between direction of gravitation and body axis,
here assumed as zero .

Because of the sine in (1) the arm exhibits a non-linear behaviour.

Figure 2: Neural controller learning an inverse model of the plant (onejointed arm) by auto-
imitation. The plant is given by its tool transformation (see equation (1)); i.e., the rule

governing the behaviour of the plant in the forward direction (from torques to kinematic states).
Notice that auto-imitative learning does not require a forward model, and obviously

needs also no movement error.

The kinematic outputs (angular position, velocity and acceleration) are
proprioceptively measured and fed back into the network's regular inputs. The
torques, also measured proprioceptively, are simultaneously offered also to the
teaching input (dashed arrow). These torques function as targets to be attained after
learning. This setup will enable the synapses of the network (see below) to attain the
right strengths. After training, the output uff of the network is linked with the
summing junction, and the output of the feedback controller is disconnected from the
teaching input of the network, but remains connected to the arm’s input via the
summing junction. Also position, velocity and acceleration signals are disconnected
from the network and connected to the related desired outputs of the pattern
generator. Now, the pattern generator’s output, when passing the network, will cause
torques forcing the arm to attain the desired movement. So long as the inverse model
being learned in this manner is correct, the negative feedback loop is uncommitted,
and the movement is controlled solely by feedforward generated through the inverse
model.
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3.   The power network used to represent the inverse model

The network representing the inverse model must operate very precisely. For this
reason, the "power network" (Kalveram, 1993) can be used. This is a three layer
SIGMA-PI network with feedforward architecture, fixed synaptic weights in the
hidden layer, and plastic weights in the output layer. The hidden neurons multiply
potentiated variables coming from the input layer, and the output neurons then
compute a weighed sum of these products. This feature maps that the central nervous
system is both additive and multiplicative, as given in sensory gating and descending
modulation (Gossard and Rossignol, 1990). If M=number of output neurons and
K=number of input neurons, the power network represents M abbreviated  K-
dimensional power series, or even Taylor series, known to approximate any function
to every required degree of precision solely by choosing appropriate coefficients,
respectively by determining the plastic synaptic weights. For that, a modified type of
Hebbian learning can be administered which guaranties convergence of the weights
(Kalveram 1997, 2000). In the present investigation, such a power network was used,
established with 3 input neurons, 15 hidden nodes representing the powers 1 to 5, and
one output neuron, connected with the hidden neurons by modified Hebbian synapses.
An outline of the network is given in fig.4 representing a simplified type of power net
(mixed terms are omitted).

4.   The modified type of Hebbian learning

The modified type of Hebbian learning (Kalveram 2000) is outlined in fig.3 in terms
of the neuron model of McCulloch and Pitts. The transfer characteristic between the
postsynaptic potential of the neuron and its output is assumed to be linear.
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Figure 3: Modified Hebbian synaptic
learning. During learning the integrator I
accumulates the products put out by the
multiplier i. After learning,  the
connection between the output a and  the
synapse i is cut, and y is set to zero. Now
I  holds the output value wi representing
the synaptic strengths. All other n
synaptic units operate in the same
manner. If  learning ends with a→0, for
all combinations of values of the input
variables x1, ..., xn the output  a  now
automatically attains the desired values
of  y.

The teaching input neither enforces the neuron to attain a post-synaptic potential
equal to y, nor reinforces the synaptic state in case of a positive outcome signalled by
a supervisor, as proposed by Pennartz (1997). The intracellular postsynaptic potential
itself mirrors the error z-y which has to be minimized (relaxation principle). Referring
to adaptive signal processing, the neuron in Fig.3 is an "adaptive linear combiner"
capable of "adaptive linear filtering" (Widrow and  Stearns, 1985). When using finite
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steps, the adaptation minimizes the error step by step in a least mean squares steepest-
descent manner, with r regulating the decrease of error per step.

5.    Results of simulated and real arm movements

In a simulation with Matlab/Simulink software, the arm was represented by (1). The
network of fig.4 was trained according to the auto-imitation algorithm of fig.2 and
modified Hebbian learning of fig.3. The result was a nearly perfect inverse model.
The same procedure was applied to a real robot arm. Fig.5 shows that also in this case
the physical properties of the arm were reproduced very well by the neural controller.
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Figure 4: Simplified power network realizing
modified Hebbian learning. The numbers in the
nodes of the hidden layer indicate the exponents.
The 15 weights aip of the synaptic contacts to the
output neuron are to be determined by the
learning rule indicated in fig.3.
    Denoting estimated angular acceleration ,
velocity and position by x1, x2, x3, the network
mirrors the equation
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Figure 5: Movement of a
mechanical lever (J=0.081,
B=0.3) in a gravitational force
field, driven by a torque motor.
Torques -and trajectories- are
determined by negative
feedback (=fb) only, or by
negative feedback combined
with the levers’s inverse model
(=ff+fb) whose parameters (i.e.
synaptic weights) have been
acquired previously by auto-
imitation plus modified
Hebbian learning.
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In fig.5, the dotted steps represented the goal sequence which was converted into the
desired positional trajectory by the pattern generator. At the beginning and after about
7s the inverse controlled movement was shortly disturbed. This activated the negative
feedback controller, which ironed out the distortion in less than 2s. Except for the
disturbations, desired and actual positions in the ff+fb condition nearly coincided.
    At the moment, an experiment is conducted with a twojointed robot arm. We
expect, that, according to the theoretical solution given in Kalveram (2000), also this
limb system can be physically identified and controlled by the methods outlined
above.
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