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Abstract – The development of fast and reliable image classification 
algorithms is mandatory for modern image applications involving large 
databases. Biological systems seem to have the ability to categorize complex 
scenes in an accurate and very fast way. Our aim is to develop an architecture 
that leads to similar performances in computer vision. In this work, we present 
a coding method based on some principles inspired from biology that achieves 
a fast classification of complex visual scenes. A signature vector is extracted 
from the visual scene by a multi-scale filtering obtained through a bank of 
Gabor filters. These vectors constitute the inputs of a radial basis function 
network. The first connection layer implements a recoding of the filter outputs. 
The second one achieves a linear separation of the classes in the space of 
coding. We showed that an incremental approach in which each class is learned 
separately outperforms a more global one in which we tried to learn all classes 
together. According to the considered image category, the subset of features 
leading to the best result could be different, suggesting the use of feature 
vectors adapted to each image category. However, one of the major results of 
our study is that the signature vector we used, albeit very simple to compute, 
contains enough information to allow a correct image classification. 

1. Introduction 

The development of image applications (video, Internet) increases the need for 
processing methods allowing recognition and fast classification of complex scenes. 
Several recent works [1, 2] seem to show that humans and animals are able to reliably 
categorize complex scenes by using their low frequency content. We try to analyze 
here how such a coding can be used in the design of an automatic classification 
system for visual scenes. 
By introducing into artificial systems some principles at work in biological visual 
systems, it appears possible to confer them some of the properties of the latter. The 
first processing step in the mammalian visual system extracts a set of low-level 
orientation features from the visual scene. This step is similar to the one achieved 
through a multi-scale wavelet filter. Field [3] has shown that such transforms lead to 
minimize the statistical dependencies between the components of the feature vector. 
Bell and Sejnowski [4], Olshausen and Field [5] showed that this mechanism is 
similar to an independent components analysis (ICA). 
In vivo, this low level representation is built in the cortical layers V1 and V2. 
Although object recognition is achieved in high-level cortical areas (Infero-temporal 
cortex IT), fast scene recognition could be based on a bottom-up mechanism 
mediated by top-down attentional modulation of low-level filters. Thus an adequate 
combination of low-level features could support complex categorization abilities. 
This is this approach we wanted to illustrate in this work. 
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2. Material and methods 

The images used in this study belong to the Corel image database. Gray-level images 
were extracted from this database and sorted into 14 categories. From this selection, 
various training and generalization sets have been built by random sampling. Images 
initially standardized to a size of 374x251 pixels were scaled down to 256x128 pixels 
by Gaussian filtering followed by an appropriate size reduction.  

2.1. Initial filtering 

To bypass the requirement for a complex process of object identification before the 
identification of the visual scene, we searched for a low-dimensional coding space 
able to capture the semantic information contained in the visual scene. Thus, a bank 
of Gabor wavelet filters adjusted to four space orientations (horizontal, vertical, 
diagonals) and five spatial frequencies covering four octaves was first used to extract 
the frequency characteristics of the visual scene. Each initial image results in 20 
filtered images. As stated above and according to Field [3], this filtering tends to 
maximize the statistical independence between the output images. This multi-scale 
processing was carried out using a Burt pyramid in a way similar to the method 
proposed by Guerin-Dugué [6] as described elsewhere [7]. 
The average energies of these 20 filtered images were then computed to constitute the 
components of a signature vector. This step allows to reduce the representation size 
of each image and to obtain a translation-invariant representation. It must be pointed 
out that the components of this vector are not independent anymore. 

2.2. Training method 

To perform the classification of the images coded in the preceding input space, we 
used a radial basis function network (RBF). The first stage of this network was used 
to adequately describe the projection of the data into the coding space. The output 
layer was then used to perform a linear classification of the scenes. 
The input layer units were initialized to the components of the signature vectors (the 
low-level coding vectors). The weight vectors of the radial basis units were selected 
at random among the low-level input vectors. The thresholds were fixed at values of 
the same order of magnitude as the class variances. 
An explicit linear classification of the images in the high level coding space was 
obtained by a supervised classification criterion: the connection matrix of this layer is 
the matrix which optimizes the desired outputs in a least-square sense. The method is 
based on the computation of the More-Penrose pseudo-inverse as described in Haykin 
[8]. 
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3. Results 

3.1. Global approach 

In this first approach, 12 classes were considered. 537 images formed the 
training set and 545 the test set. We tried first to categorize these scenes using a 
single network with as many output units as the class number. With 20 RBF 
centers (data no reprinted), the results were not satisfactory. The training score 
was low and consequently a correct generalization could not be achieved. 
Several examples were not classified at all yielding an overall rejection rate 
higher than 68%. The use of 200 RBF centers improved the training score 
(Values ranging from 38% to 69 %).  
 

Table 1 Generalization scores for the 12 classes with 200 RBF centers. Class names 
:planes (1), dishes (2), Utah (3), minerals (4), dogs (5), fishes (6), glasses (7), butterflies 
(8), porcelains(9), figurines (10), cars (11), flowers(12). 

 
Generalization (Table 1) was improved accordingly but remained heterogeneous 
across the different classes. When the number of RBF was low, there was a strong 
sampling effect leading to a great variability of the results. In some cases, the 
confidence interval remained significantly high even with 200 RBF centers. This was 
the case for the two classes “Glasses” and “Figurines”. In these cases, the variability 
seemed to be inherent to the class. 

3.2. Incremental approach 

3.2.1. Preliminary experiments 

In this second protocol, each class was learned separately against an equal number of 
counter-examples (called “Others”) which are taken at random in the other classes. 
The set size for examples and counterexamples was about 50 as well for training as 
for generalization. These sizes being relatively low, the experiments were repeated 
three times with three independent training and test sets for each case. Three classes 
were studied: “Planes”, “Porcelains” (which had good performances in the preceding 
approach) and “Dogs” (which had worse performances) (Figure 1). The used 
networks were initialized with 20 RBF centers.  

% 1 2 3 4 5 6 7 8 9 10 11 12 Reject
1 50,7 - 3,3 - - - - - - - 1,3 - 44,7
2 - - - 6,3 0,8 - - - - - - 1,6 91,3
3 1,1 - 23,3 - 3,3 1,1 - - 2,2 - - - 68,9
4 0,8 - 0,8 28,8 - 2,3 - 0,8 - - - 3,0 63,6
5 - - 4,0 0,8 11,1 2,4 - 0,8 - - 3,2 0,8 77,0
6 - - 3,7 2,2 - 0,7 - - - - 0,7 0,7 91,9
7 - - 2,9 - 0,7 - 9,4 - 20,3 15,9 - - 50,7
8 - - - 7,3 - 1,3 - 13,3 1,3 - - - 76,7
9 2,0 - 0,7 - - - 0,7 - 45,3 4,7 - - 46,7

10 - - - - - - 18,7 - 6,7 42,0 0,7 - 32,0
11 4,1 - - - 2,0 - - - - 2,0 34,0 - 57,8
12 - - - 2,1 - 0,7 - 1,4 - - 0,7 24,8 70,2
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We observed first that, contrarily to the preceding results, none of the examples were 
rejected. We obtained satisfactory training scores. The variability of the recognition 
scores depended on the class. “Planes” and “Porcelains” reached the highest scores. 
“Dogs” still gave the worst results. In order to test whether these score resulted from 
the small size of the example set or from a greater heterogeneity of the class, the 
number of RBF centers was increased by a factor of two. The results were 
appreciably better (Figure 1 bottom right). Thus, we can conclude that the relative 
weakness of these last results was due to the heterogeneity of the “Dogs” class and 
not to a lack of information in the input coding-vector. 

The different samplings led to variable results. This variability could be due to the 
random initialization of the weight matrix of the RBF unit or to the inherent 
variability of the sampling method used with a too small number of examples. In 
order to test this hypothesis a final experiment with an increased number of examples 
in each class was carried out. 

3.2.2. Final results 

To check the robustness of the method in more realistic conditions (many more 
examples and counter-examples), we designed a new test set with 400 “Planes” and 
800 counter-examples. The learning sets were the same as previously described. The 
obtained results were satisfactory (learning rate: “Planes” 0.81±0.14, counter-
examples 0.79±0.26; recognition rate: “Planes” 0.84±0.16, counter-examples 
0.62±0.07). 
To check whether all the information contained in the coding vector was required to 
obtain correct classification results, we performed experiments with a reduced set of 
components extracted from this coding vector. In a first experiment, we considered 
each frequency separately with all the orientations (Table 2). Training results were 
satisfactory. However, the best ones were obtained with the high-frequency channels 
(f1 through f3). Test results were correct for f2 and f3. 

Figure 1 : Training (white) and generalization (gray) 
scores (one class vs counter-examples). 20 RBF 
centers: top left “Planes”; top right “Dogs”, bottom 
left “Porcelains”. 40 RBF centers: bottom 
right“Dogs”, “Dogs”. 
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   f1 f2 f3 f4 f5 

Planes 0,94±0,06 0,90±0,02 0,90±0,06 0,86±0,02 0,88±0,06 Training 
Others 0,81±0,08 0,84±0,12 0,86±0,05 0,78±0,05 0,79±0,05 

Planes 0,83±0,02 0,86±0,08 0,86±0,02 0,86±0,03 0,85±0,05 Recognition 
Others 0,59±0,12 0,75±0,08 0,69±0,03 0,60±0,10 0,52±0,12 

Table 2 Training and generalization results: one frequency, all orientations. “Planes” vs 
counter-examples with 20 RBF centers. 

 
There was a significant degradation for f1 and f5. In a second experiment (Table 3), 
we considered each orientation separately with all the frequency channels. “Planes” 
were correctly learned, but the counter-examples learning rates were worse than in 
the previous experiments. An orientation component alone did not yield a correct 
recognition rate, except for the vertical one (Table 3 Column O2).  
 

  O1 O2 O3 O4 

Planes 0,85±0,09 0,85±0,07 0,84±0,04 0,77±0,04 Training 
Others 0,71±0,03 0,75±0,12 0,62±0,05 0,62±0,05 

Planes 0,69±0,04 0,81±0,04 0,86±0,04 0,76±0,07 Recognition 
Others 0,41±0,03 0,71±0,04 0,45±0,10 0,60±0,08 

Table 3  Training and generalization results: one orientation, all frequencies. 
“Planes” vs counter-examples with 20 RBF centers. 

 
Up to this stage, all the images used consisted in focused objects (planes, animals…) 
and the features suitable for their recognition could be very specific of this kind of 
images. In order to study the importance of frequency or orientation components in 
the coding vector, we performed the same set of experiments with scenes rather than 
object images. We compared “Nature” scenes and “Building” scenes. The results 
showed that the full coding vector did not allow reaching the same training and test 
rates as those previously obtained (learning rate: “Nature” 0.68±0.28, “Buildings” 
0.68±0.14; recognition rate: “Nature” 0.58±0.08, “Buildings” 0.58±0.20).  
There were no significant differences between the two sets. However, when we use 
only a part of the coding vectors, there were significant differences with the results 
obtained in the “Planes” experiment (Tables 4,5). The frequency effect (Table 4, e.g. 
f1 versus f4) was much more pronounced for “Nature” than for “Building”. There 
seemed to be no orientation effect  (Table 5). 

 

  f1 f2 f3 f4 f5 

Nature 0,74±0,00 0,77±0,02 0,74±0,12 0,71±0,13 0,62±0,14 Training 
Building 0,74±0,08 0,73±0,06 0,67±0,16 0,64±0,07 0,63±0,16 

Nature 0,73±0,03 0,74±0,09 0,73±0,12 0,67±0,09 0,62±0,10 Recognition 
Building 0,63±0,04 0,56±0,06 0,43±0,09 0,44±0,05 0,53±0,12 

Table 4 Training and generalization results: one frequency, all orientations. “Nature” vs 
“Building” with 20 RBF centers. 
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  O1 O2 O3 O4 

Nature 0,68±0,04 0,72±0,07 0,73±0,02 0,65±0,05 Training 
Building 0,75±0,06 0,71±0,08 0,78±0,04 0,83±0,06 

Nature 0,62±0,01 0,62±0,01 0,57±0,03 0,53±0,05 Recognition 
Building 0,67±0,03 0,56±0,13 0,54±0,06 0,61±0,08 

Table 5 Training and generalization results: one orientation, all 
frequencies. “Nature” vs “Building” with 20 RBF centers. 

4. Discussion and conclusion 

In spite of good training results, the global approach investigated first in this paper 
did not allow correct generalization scores. This could be due to the large number of 
RBF centers (200) required to reach a correct learning score. This increase in RBF 
number would probably lead to overfitting. However, the fact that such a complex set 
of very different images could be satisfactory learned is an indication that the coding 
vector introduced in this study reflects at least partially the information content 
suitable to characterize each image category. 
The first experiments with the incremental approach suggest that the complexity of 
the recognition problem differs from class to class. For examples, “Planes” and 
“Porcelains” are correctly learned (more than 0.8) and recognized (about 0.7). On the 
contrary “Dogs” seem to be much more difficult (Training : 0.65; Test : 0.5). This 
could be due to a much greater heterogeneity of the data, which is obvious at visual 
inspection. This last category has a more pronounced semantic meaning that could be 
extremely difficult to relate to low-level frequency composition. The main result of 
this section is the demonstration that correct classification scores can be obtained 
even with a very small number of training examples (about 50). Further experiments 
should be done to generalize the approach to a larger number of object classes. With a 
large set of classes, it will be possible to use committee machines to determine which 
class a given image belongs to. 
In a second step, we tried to analyze more precisely what kind of information is 
useful for classification. To investigate this question, we performed some 
experiments with a reduced set of features among the components of the coding 
vector. We observed that correct results could be achieved with only orientation 
information if we consider the high and mid-level frequency channels. The use of the 
full frequency bank according to one orientation usually gave poor results. This could 
be due to a higher correlation across the frequency channels of the same orientation. 
The results obtained with “Nature” and “Buildings” sets suggest that the optimal 
features could differ according to the scene semantics and that in the case of scenes 
characterized as a whole all the features contained in the coding vector are useful. 
These results suggest that feature selection techniques, which cannot be simply 
achieved with RBF networks, may be more appropriate. In this respect, the use of 
more sophisticated covariance indexes might improve the results. The use of auto-
organization algorithms to project the RBF centers at appropriate locations within the 
data could also improve the results. However, more adaptive methods could be 
introduced. Our results suggest that each scene category could have its own optimal 
descriptors. Recent studies lead to the same conclusion [9] and propose to use ICA to 
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identify which sub-set of low-level filters is appropriate for the description of a given 
class of images. 
Another important question raised by these studies is the fact that a given scene does 
not belong to a unique category. A scene showing a dog running on a park with is 
master can be categorized as “Animal”, “Dog”, “Person”, “Sport”, “Nature”, … 
depending on the context. To achieve such multi-categorical classification requires 
more complex descriptors that can be searched among complex combination of the 
low-level features described in the present study. 
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