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Abstract.

We describe an efficient algorithm for simultaneously extracting multi-
ple smoothly-varying non-linear invariances from time-series data. The
method exploits the concept of mazimizing temporal predictability intro-
duced by Stone in the linear domain [11] - we term this temporal compo-
nent analysis (TCA). Our current work estends this linear method into
the non-linear domain using kernel-based methods [4]; it performs a non-
linear projection of the input into an unknown high-dimensional feature
space, computing a linear solution in this space. In this paper we describe
the improved on-line version of this algorithm (KTCA) for working on
very large data sets, and demonstrate its applicability for computer vision
by extracting non-linear disparity directly from grey-level stereo pairs,
without pre-processing.

1 Introduction

Independent component analysis (ICA) is a statistical method currently applied
theoretically and practically to linear problems in many domains including pat-
tern recognition. However in its basic form it is atemporal, and also limited in
the non-linear domain: if any two variables X, Y are independent, F'(X), G(Y")
are also independent. An alternative objective function which we consider here
is to maximize temporal predictability in time series data [11, 12]. It is es-
sentially temporal, and can be non-linear. We will refer to the linear method
of Stone as TCAJ[11], and the non-linear extension of this we advance in this
paper as KTCA. This is appropriate since they have precise analogues in PCA
and KPCA [9], and have the same advantages of closed-form solutions avoiding
local minima.

In previous work we extended TCA to the non-linear domain [4]. This used
the kernel-based methods of Support Vector Machines that extended PCA to
KPCA [9]. We develop this further here, providing an efficient online version of
KTCA for very large data sets, that can extract multiple non-linear functions
that are predictable in time. It extends Stone’s linear algorithm into the non-
linear domain [11], and his non-linear network algorithm into a closed-form
method extracting multiple parameters [10]. It also advances on SFA [12], to
the extent that it overcomes the curse of dimensionality through exploiting
kernels. We present the results of running this algorithm on stereo pairs to
extract non-linear disparity directly from grey levels, being the most predictable
parameter.
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2 TCA and KTCA

First we summarize Stone’s TCA [11]. Consider ! time-series vectors x;<; where
each n-dimensional vector z; is a linear mixture of n unknown temporally
predictable components at time ¢. The problem is to find an n-dimensional
weight vector w so that the output y; = w’x; at each i is a scaled version
of a particular component. Many physical parameters exhibit such temporal
predictability and overall variability: they are predictable over short horizons
but unpredictable over long ones. Accordingly, a degree of predictability TP
can be defined as the ratio between the long-term variance V and the short-term
variance S of the output sequence i.e.
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where the values 3, and y; represent the output at i centered using long- and
short-term means. In TCA one aims to find the components that maximize
TP, which can be rewritten as:

w! ' Cw = 1 ~ 1 o~
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Here, C and C are nxn covariance matrices estimated from the [ inputs. The
objective function TP is a version of the Rayleigh quotient and the problem
to be solved is, in analogy to PCA, the right-handed generalized symmetric
eigenproblem:

Cw = ACw (2)

where ) is the largest eigenvalue and w the corresponding eigenvector. In this
case, the component extracted y = w’x corresponds to the most predictable
component with TP= A. Most importantly, more than one component can
be extracted by considering successive eigenvalues and eigenvectors which are
orthogonal in the metrics C' and C, i.e. w!/Cw; = 0 and w/ Cw; = 0 for

i #j.
KTCA: kernelized TCA

How can we make this algorithm non-linear? We first project the input data x
into some unspecified high-dimensional feature space via a nonlinear mapping
¢, and then find the weight vector w that maximizes TP in this space (see
[4] for full derivations in this section). In this case, to optimize Eq. (2) the
covariance matrices must be estimated in the feature space as

—— T

O = %meT and C = %205&:) b(x;)
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where ¢(x;) and ¢(x;) represent the data centered in the feature space. The
problem with this approach is that the dimensionality of the feature space can
be huge [12]. Therefore, to avoid working with the mapped data directly, we
assume that the solution w can be written as an expansion in terms of mapped

training data: w = Zizl a;¢(x;). TP can then be written as:

_J"KK o

TP = ——
oTK KT«

(3)

where o = (a1 ---oy)T and K (likewise K) is a (IxI) matrix with entries defined
as

Kij = ¢(xi)" o(x;) (4)

To avoid explicitly computing dot products in the feature space, we introduce
kernel functions defined as k(x,y) = ¢(x)7 ¢(y), which means we just have
to evaluate kernels in the input space. Any kernel involved in Support Vector
Machines can be used, e.g. linear, polynomial, RBF or sigmoid. By now
defining the kernel matrix K with entries

Kij = k(xi,%;) = ¢(x:)" o(x;) ()

we can arrive at the corresponding eigenproblem:

KK a= KK’ (6)

where X is again the corresponding largest eigenvalue equal to TP. As for the
linear case, more than one source can be extracted by considering successive
. . . . . . 2

eigenvalues and eigenvectors. Similarly to [5], a regularization on ||a||* that

constrains the solution to have small «; is obtained by replacing KK by

KKT + pI. In order to recover a temporal component, we need to compute the
nonlinear projection y = w’ ¢(x) of a new input x onto w which is equivalent

toy = 22:1 a;k(x;,X).

3 Online KTCA

If the eigen problem is solved on the entire training set then the matrices (I x 1)
easily become computationally intractable. We propose a sparse solution using
a shorter number p of training data in the expansion which we will call support
vectors. The output is now y = ) . oy a;k(x;,x) where SV is the set of
support vectors. The solution must lie in a subspace spanned by SV, which
is sensible if there is statistical redundancy in the dataset (guaranteed in our
case by the temporal predictability assumption). The kernel elements K;; are
computed between the p support vectors x; and the [ training data x;. Thus,

the kernel matrices K, K and K are rectangular (p x [) but the covariance
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matrices (K KT) and (K K7) used in the eigenproblem are only p x p. This
approach can effectively solve very large problems, provided p << .

However, the general question remains of how to choose support vectors. It is
both necessary and sufficient that they span the space of the solution in feature
space. If we use a linear kernel, we can coerce them to be the coordinates of the
input space without considering the input patterns themselves. The algorithm
is then identical to TCA (although any other basis set spanning the input space
would be equivalent). However, in the non-linear case these vectors are chosen
from the training set. They may be estimated by a kernel clustering algorithm
in the feature space [1] or by a sparse greedy approximation algorithm [6].
Alternatively, as in Reduced Support Vector Machines [3], a random subset of
the training data can be sufficient which showed that solutions built on a small
set of support vectors chosen at random were usually better than those built
on the entire dataset. We have found the same result, since a small number
of support vectors provides an overconstrained, regularized solution. However,
in the tests below, we choose supervectors such that for any two vectors z,y,
|k(z,y)| < 7. This ensures variation in the non-linear features ¢. The number
of support vectors is no longer a parameter: it is a function of 7. We found this
method provides a significant improvement over random selection when large
amounts of noise vectors (or “silence”) are present in the data.

The algorithm requires minimal memory, making it ideal for very large data
sets. It allows us to avoid a critical problem: computational limits mean we
cannot have a sufficiently high ratio of data to model parameters, and the prob-
lem is underconstrained. We can always increase [ to overcome this problem
regardless of the input dimension (given enough different data), since mem-
ory is independent of [ and computation time is linear in [. The greater the
input dimension, the more complex is the non-linear feature space and hence
the algorithmic power. This advantage results from two features. First, the
implementation estimates the long- and short-term kernel means online using
exponential time averages parameterized using half-lives A, A; (see [10]). Sec-
ond, the covariance matrices K, K are also updated online at each time step
e.g. K is updated by using the column vector of kernel values computed for
the current time step; there is therefore no need to explicitly compute or store
kernel matrices.

4 Simulations

We ran online KTCA on fragments of 128x128 stereo pair of the Pentagon
shown in Figure 1[a](left). Running by pixel from left to right and top to
bottom, we took 8 horizontal pixels from the left image and the corresponding 8
from the right to provide 16 inputs normalized to zero mean and unit variance.
Repeating from top to bottom and left to right yields 30720 16-dimensional
vectors. Setting 7 = 0.3 results in SV = 132 with an RBF kernel ¢ = 1.5; we
set A; = 1,A; = 100. Each TP component can be reconstructed as an image:
we show the first 4 of these in Figure 1[b]. The first component corresponds
to non-linear disparity. To substantiate this affirmation, we simulated the
stereo pair from the image used in [10] with the sub-pixel method described
in [2], as shown in Figure 1[c](right). We define disparity as the 2D eggshell
function in Figure 1[c](left) (max. disparity 1.4 pixels). Running KTCA on this
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pair, the first TP component is as shown in Figure 1[d](middle): it correlates
with the disparity |r| > 0.98. Most significantly, testing the solution obtained
for the Pentagon on this artificial one, the first component correlates with
disparity |r| > 0.9 as shown in Figure 1[c](right). Hence the parameter shown
in Figure 1[b] is truly disparity.

[c]

Figure 1: KTCA: the temporal components of stereo pairs. [a] Real stereo
pair (left) and simulated one (right) [b] The four most predictable components
of the Pentagon: the first corresponds to disparity. [c] The disparity function
underlying the simulated pair (left); the most predictable component extracted
on this pair (middle); the most predictable component extracted using the
solution found for the Pentagon.

5 Conclusion

The method provides an efficient algorithm for maximizing a different statisti-
cal property to ICA which is both inherently spatio-temporal and potentially
non-linear - temporal predictability. It overcomes the curse of dimensionality
by projecting inputs into a non-explicit non-linear space defined by kernels, and
finding the most predictable solution in this space. The result is an efficient
closed-form solution. The online algorithm allows us to use large quantities
of high-dimensional data, resulting in a complex feature space and an over-
constrained solution. We test it on the hard task of extracting disparity from
raw visual data confounded by other linear invariances, rather than simpler
artificial random dot stereograms.
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We suggest that whilst ICA seems most appropriate for creating sparse rep-
resentations for tasks such as redundancy reduction found in early cortical
areas, temporal statistics (and non-sparse representations) may turn out to be
significant in higher cortical perceptual areas, such as visual IT, where cells
have complex receptive fields providing invariance to transformations that are
correlated over time [7, 8]; future work is proceeding in this direction.
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