
Rule extraction from support vector machines

Haydemar Núñez1,3 Cecilio Angulo1,2 Andreu Català1,2

1Dept. of Systems Engineering, Polytechnical University of Catalonia
Avda. Victor Balaguer s/n E-08800 Vilanova i la Geltrú, Spain

{hnunez,cangulo}@esaii.upc.es

2LEA-SICA. European Associated Lab. Intelligent Systems
and Advanced Control

Rambla de l’exposiò s/n E-08028 Vilanova i la Geltrú, Spain
andreu.catala@upc.es

3Universidad Central de Venezuela. Facultad de Ciencias. Escuela de
Computación. Caracas, Venezuela

hnunez@kuaimare.ciens.ucv.ve

Abstract. Support vector machines (SVMs) are learning systems based on the
statistical learning theory, which are exhibiting good generalization ability on
real data sets. Nevertheless, a possible limitation of SVM is that they generate
black box models. In this work, a procedure for rule extraction from support
vector machines is proposed: the SVM+Prototypes method. This method allows
to give explanation ability to SVM. Once determined the decision function by
means of a SVM, a clustering algorithm is used to determine prototype vectors
for each class. These points are combined with the support vectors using
geometric methods to define ellipsoids in the input space, which are later
transfers to if-then rules. By using the support vectors we can establish the
limits of these regions.

1. Introduction

The support vector machine (SVM) is a type of learning machine based on the
statistical learning theory, which implements the structural risk minimization
inductive principle with the purpose of obtaining a good generalization from limited-
size data sets [4,7,10]. Although initially conceived for classification problems of two
classes with linearly separable data, new algorithms have already been derived to
solve classification problems with non-separable data [5], regression [8] and multi-
class problems [2,12].

An important point to stand out is that the support vector machines, like the neural
networks, generate black box models in the sense that they do not have the ability to
explain, in an understandable form, the process by means of which the exit takes
place. In order to bear this limitation, the hypothesis generated by either neural
network or SVM could be transferred into a more comprehensible representation;
these conversion methods are known as rule extraction algorithms.

In the last years, a proliferation of rule extraction methods from trained neural
networks has been observed [1,6,9,11]. Nevertheless, in the case of the SVM, few

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 107-112

research tendencies have been published. In this work, a procedure for the
interpretation of the SVM models is proposed: the SVM+Prototypes method. The
basic idea is the following one: once determined the decision function by means of
SVM, a clustering algorithm is used to determine prototype vectors for each class.
These points are combined with the support vectors using geometric methods, to
define regions in the input space that can be transferred to if-then rules.

This paper is organized as follows: the foundations of the support vector machines
are exposed in the next section. The SVM+prototypes rule extraction method is
described in section 3. Then, section 4 describes experimental results of our method
applied to several data sets. Finally, we present the conclusions and the future work.

2. Support Vector Machines

Let us consider a binary classification task with the training data set (xi, yi), xi ∈ Rm,
yi={-1,+1}, and let the decision function be f(x)=sign(w⋅x+b). A good generalization
is achieved by maximizing the margin between the separating hyperplane (w·x+b=0)
and the closest data points in the input space. This optimal hyperplane can be
determined as follow

minimize: ‹w·w›
subject to yi (w·xi + b) ≥ 1 ∀ i

Introducing Lagrange multipliers to solve this problem of convex optimization and
making some substitutions, we arrive to the Wolfe dual of the optimization problem:

maximize: ()∑∑
==

−=
m

ki
kkii

m

i
·yyW

1,
ki

1
i 2

1
)(xxαααα

subject to αi ≥ 0 ∀ i, ∑
=

=
m

i
ii y

1
0α

The hyperplane decision function can thus be written as:

())
1

i by(sign)f(
sv

i
ii += ∑

=
·xxx α (1)

In order to expand the method to nonlinear decision functions, the input space
projects to another higher-dimensional dot product space F, called feature space, via a
nonlinear map φ: Rm → Fd (d>>m). In this new space the optimal hyperplane is
derived. Nevertheless, by using kernel functions which satisfy the Mercer’ theorem, it
is possible to make all the necessary operations in the input space by using
φ(xi)·φ(xj)=K(xi,xj). The decision function is formulated in terms of these kernels:

 ()),
1

i bKy(sign)f(
sv

i
ii += ∑

=
xxx α (2)

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 107-112

Just a few of the training patterns have a weight αi non-zero in the equations (1)
and (2). These elements lie on the margin and they are known as support vectors
(SV). This means that the hypothesis representation generated by the SVM is given
solely by the points that are closest to the hyperplane and therefore these are the
patterns most difficult to classify.

3. The SVM+Prototypes method for rule extraction

Our proposal takes advantage of the information provided by the support vectors.
They are used to determine the boundaries of regions defined in the input space
(ellipsoids or hyper-rectangles). These regions are obtained from the combination of
prototype vectors and support vectors. The prototype vectors are computed through a
clustering algorithm. Each region defines a rule with its corresponding syntax (Figure
1): equation rules, which correspond to mathematical equations of the ellipsoids and
interval rules, associated with hyper-rectangles defined from parallel ellipsoids to the
coordinate axes.

Figure 1. Rules generated by the SVM+prototypes algorithm.

An ellipsoid is defined by the prototype, which will be the centre, and by a support
vector within the partition. The chosen support vector will be the farthest to the
prototype. The straight line defined by these two points is the first axis of the
ellipsoid. By simple geometry, the rest of the axes and the associate vertices are
determined. There are three possibilities to define these vertices: with the support
vector itself, derived from a support vector or with the farthest point to the prototype.
To construct hyper-rectangles a similar procedure is followed. The only difference is
that lines parallel to the coordinate axes are used to define the axes of the associated
ellipsoid.

In order to define the number of ellipsoids per class, the algorithm follows an
incremental scheme. Beginning with a single prototype, the associated ellipsoid is
generated. Next, a partition test is applied on this region. If it is negative, the region is
transferred to a rule. Otherwise, new regions are generated. This procedure is repeated
while a region that fulfils the partition test exists or until the maximum number of
iterations is reached. This process allows to control the number of generated rules.

For each iteration, there are m regions with a positive partition test and p regions
with a negative partition test. These last ones are transferred to rules. In the next
iteration, the data of the m regions are used to determine m+1 new prototypes and to

SVM

x1

x2

Rule
extraction

Interval rule:
IF X1 ∈ [a,b] AND X2 ∈ [c,d]
THEN CLASS

Equation rule:
IF AX1

2 + BX2
2 + CX1X2 +

DX1 + EX2 + F ≤ G
THEN CLASS

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 107-112

generate m+1 new ellipsoids. If the maximum number of iterations is reached, all the
regions (independently of the results of the partition test) are transferred to rules.

Test conditions attempt to diminish the level of overlapping between regions of
different classes by applying several heuristics. The partition of a region is made if the
generated prototype belongs to another class, if one of the vertices belong to another
class or if a support vector from another class exits within the region.

Figure 2 shows an example of the regions generated by the algorithm (after three
iterations). In this case a SVM with a polynomial kernel of degree 2 is trained using
randomly-generated separable data (each element is a par (X,Y) with X = [x1,x2],
Y={-1,+1}). In the Figure the prototype points, the vertices and the support vectors
can be observed.

Figure 2. a) Ellipsoids for equation rules. b) Hyper-rectangles for interval rules.

4. Experiments

In order to evaluate the performance of the SVM+Prototypes algorithm, we carried
out two kinds of experiments: with artificial datasets and IRIS data set. In both we
used vector quantization to generate the prototypes. In the first case, 12 artificial
samples were generated randomly (each one constituted by 160 training data and 100
test data). Different overlapping degrees between classes and noise levels were
guaranteed for these samples. Afterwards, the decision function was determined by
the SVM for each sample using only training data (Figure 3). Finally, the
SVM+Prototypes algorithm was applied and rules as following were produced:

IF Condition1 OR...OR ConditionM THEN Class1 ELSE Class2

Table 1 shows the prediction error obtained by each data set. We observed that the
rule error differs from the provided by the SVM at the most in 4%.

In the second experiment, we applied the SVM+Prototypes algorithm to IRIS data
set [3]. This process was repeated 30 times, but the data was randomly divided (75%
training and 25% test) each time. The prediction error average was 0.03 for SVM,
0.046 for equation rules and 0.047 for interval rules. Bellow, we show the best
assembly of interval rules obtained.

R1: IF X1 ≤ 6.23 AND X2 ≥ 2.09 AND X3 ∈ [1.90,2.03] AND X4 ≤ 0.67
 THEN Iris setosa (error: 0.00)

a) b)

support vector vertex point prototype point�

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 107-112

R2: IF X1 ∈ [4.42,7.13] AND X2 ∈ [2.04,3.50] AND X3 ∈ [2.89,5.17]
 AND X4 ∈ [0.90,1.79] THEN Iris versicolour (error: 0.02)

R1: IF X1 ≥ 4.50 AND X2 ∈ [2.34,3.55] AND X3 ∈ [4.66,6.51] AND X4 ≥ 1.27
 THEN Iris virginica (error: 0.06)

Where: X1 = sepal length, X2 = sepal width, X3 = petal length, X4 = petal width.

5. Conclusions and future work

The functions generated by the SVM are constructed in terms of the support vectors.
These vectors were used to define the boundaries of the regions defined in the input
space. By using support vectors it is possible to build a set of ellipsoids that represents
the class with minimum overlapping between classes.

At the moment we are working in the evaluation of different clustering algorithms
to improve the generation of prototypes. The selection of good prototypes determines
the number and quality of regions. In the future, we will apply the rule extraction
algorithm to other public data sets. Also, we want to develop algorithms to simplify
rules, with the purpose of producing a compact assembly of rules.

The final objective of this work is the development of a hybrid learning system
based on SVM. The idea is that it allows to transform, by means of the rule extraction,
the functions produced by SVM and the insertion of the prior domain knowledge.

Figure 3. Artificial data sets and decision function generated by SVM

C1 C2 C3

C4 C5 C6

C7 C8 C9

C10 C11 C12

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 107-112

Table1. Results obtained for artificial datasets

SVM Equation rules Interval rules
Data set Error #SV Error #C1 Error #C2

C 1 0.04 7 0.07 1 0.05 1
C 2 0.05 7 0.05 2 0.06 3
C 3 0.03 8 0.04 2 0.06 2
C 4 0.06 12 0.08 5 0.09 6
C 5 0.02 15 0.06 4 0.04 4
C 6 0.02 9 0.03 3 0.05 4
C 7 0.05 10 0.05 2 0.03 2
C 8 0.05 20 0.05 2 0.07 3
C 9 0.03 13 0.04 2 0.02 2
C10 0.11 20 0.11 1 0.13 2
C11 0.16 23 0.16 4 0.19 6
C12 0.16 37 0.15 3 0.15 6

#C1=Nº equation conditions. #C2=Nº interval conditions

References

1. R. Andrews, J. Diederich, A. Tickle: A Survey and Critique of Techniques for
Extracting Rules from Trained Artificial Neural Networks. Knowledge-Based
Systems, 8(6), 373-389 (1995).

2. C. Angulo, A. Català A: K-SVCR. A Multi-class Support Vector Machines.
Proc.of ECML’2000, Lecture Notes in Computer Sciences, 31-38 (2000).

3. C. J. Merz, P. M. Murphy: UCI Repository for Machine Learning Data-
Bases.[http://www.ics.uci.edu/~mlearn/MLRepository.html], Department of
Information and Computer Science. University of California, Irvine (1996).

4. V. Cherkassky, F. Mulier: Learning from Data. John Wiley & Sons, Inc. (1998).
5. C. Cortes, V. Vapnik: Support-Vector Networks. Machine Learning, 20, 273-297

(1995).
6. M. Craven, J. Shavlik: Using Neural Networks for Data Mining. Future

Generation Computer Systems, 13, 211-229 (1997).
7. N. Cristianini, J. Shawe-Taylor: An Introduction to Support Vector Machines

and other kernel-based learning methods. Cambridge University Press (2000).
8. H. Ducker, C. Burges, L. Kaufman, A. Smola, V. Vapnik: Support Vector

Regresion Machines. NIPS, 9, 155-162, MIT Press (1997).
9. A. Tickle. R. Andrews, G. Mostefa, J. Diederich: The Truth will come to light:

Directions and Challenges in Extracting the Knowledge Embedded within
Trained Artificial Neural Networks. IEEE Transactions on Neural Networks,
9(6), 1057-1068 (1998).

10. V. Vapnik: Statistical Learning Theory. John Wiley&Sons, Inc. (1998).
11. S. Wermter, R. Sun: Hybrid Neural Systems. Springer-Verlag (2000).
12. J. Weston, C. Watkins: Support Vector Machines for Multi-class Pattern

Recognition. Proc. of ESANN’99, 219-224 (1999).

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 107-112

