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Abstract. It is assumed that complex systems are represented by pa-
rameters that evolve with time. Hence, it is possible to survey systems
and to make diagnostics analyzing time series. The paper presents the
development of a neural architecture. A membership degree of an input
vector to a prototype is introduced along with the membership degree of
the input to a class. The proposed unsupervised learning process makes
possible the creation of new prototypes and new classes when necessary.
The application to standard time series shows good results: 96% of the
inputs are well classified using few prototypes.
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1 Introduction

Industrial systems are most of the time quite difficult to monitor when the
number of process data is large. So, failures are difficult to localize without us-
ing a model of the real system. To find such a model, many standard methods
based on identification techniques could be applied [1], as well as neural based
methods that are successfully used for identification of large scale systems [2]
and of industrial components [3]. All these methods lead to a reduced set of
representative parameters. For example, a neural based online identification
technique (e.g. [4] [5]) leads to evolutions of the connection weights. So, the
monitoring and the diagnostic of the functioning state of the complex system
could be achieved by surveying the model parameters which have evolutions
that are similar to time series. Hence, it has been chosen here to consider that
the identification phase of a complex system is done, and that the modifications
of the system are characterized by the evolutions of time series. So, the study
focuses on the monitoring and diagnostic of such time series. Standard series
are available on the internet [6] and are used in the present study.

In real cases, the representative parameters of the actual system would deviate,
slowly or sharply; would shift, upwards or downwards; would oscillate. As the
amplitudes of these evolutions are a priori not known, it is necessary to use
dynamic architectures [7] and/or specific learning methodologies [8].
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Only few architectures are able to adapt their architecture in accordance with
the evolution of the input data, creating new prototypes and/or adapting ex-
istent prototypes when necessary, and simultaneously create new classes (new
neurons on the output layer) or modify classes shape when necessary; i.e. when
the newly created prototype is far from all already known prototypes. Among
these architectures, it is possible to mention the Cluster Detection and Labeling
Network (CDL) developed in 1998 by Eltoft et al. [9] and the improvements
presented by Lurette et al. [10]. Here is presented a new rule for the iterative
modification of the center and the covariance matrix of the prototypes that
allows the adaptation of the classes with unknown data.

2 Description of the developed Neural Network

The concepts described here are illustrated by a classical three layers network.
The input layer consists of as many neurons as components of the input vector
called X;. The hidden layer is totally connected to the input layer, and each
neuron represents a prototype P; of one class. So, the output of each neuron of
the hidden layer is defined as the membership degree (eq.1) of a new example
X; to the corresponding prototype P;.

(P, i) = expl(— 5o (d(Py, i) (1)

where
d(Pj, X;)? = (X; — Mp,)T E;jl (Xi — Mp,), Mahalanobis distance;
Mp,, mean vector of the prototype;

E;jl, full covariance matrix [11] of the prototype;
(X MEF)TER (X - MET) -~
= maxx;ep; Y T~ , normalization factor.

k+1
and ap,

The Mahalanobis distance has been chosen to give the prototypes an Hyper-
Elliptical shape (see figure 2), for a better description of their neighborhood.

The output layer consists of as many neurons as detected classes. The output
of each neuron of the output layer defines the membership degree (eq.2) of the
example X; to the corresponding class Cj,.

U(Cy, X;) =min(1, Y w(P;,X;)) (2)
PieCy

The main benefit of this neural network is that its structure is not a priori
fixed or fixed after a unique learning phase like many classifiers. A particular
learning principle has been developed in order to realize this structure adap-
tation, not only by adapting the connection weights but also by modifying the
size of the hidden layer and the size of the output layer (figure 1).
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Figure 1: Learning phases.

During the first stage (classification without merging), for each new input
vector, different cases could occur. The membership degree of X; is calculated
for each known prototype and compared with two thresholds. The table 1
summarizes the four cases illustrated by the figure 2.

Mammnn Tleeshold (e
o R Mt Threshold (e
_ X1, Xo, X3, X4: input vectors
% Py, P>, Ps, Py : known prototypes
C1, Cs, Cs, : classes
P} : prototype k belongs to Class j

Xy

Figure 2: Tllustration of the membership of input vectors to prototypes.

Input Membership degree to

vector Plo 3 PQO 2 PSO 1 Pfl Then

X1 € 5 € 5 New proto. Ps=X1; new class Cy; X1 € X

X5 € € ”>, u> New proto. Ps = Xa; belongs to C1; X2 € Xy
X3 € u:mm € € Adaptation of PQOZ; X3 belongs to Co; X3 € X
X4 ”>, € € u> New proto. P; =X4; C2 and C3 merge; X4 € Xec

Table 1: Different cases for the “classification without fusion” stage.

When necessary, the prototype P; is adapted in the same way than in [7],
but with the full covariance matrix ¥ p,. This adaptation is performed in an
iterative manner using the following relations (eq. 3 and 4).

k 1
MEF =~ _ME + ——X;
P; S A ®
Ek+1:k_12§3 +#(Xi_M1’g)T(Xi—M1’§) (4)
P, BT k) ’ '
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This adaptation is illustrated in figure 3.

Figure 3: Illustration of the adaptation of the prototype.

3 Application to time series analysis

To validate the proposed development and to assure its abilities to detect and
monitor the model of a real system, it has been tested on the “Synthetic Control
Chart Time Series” database [6]. This database is composed of six different
classes of control charts, described in figure 4 by six examples from each class.

Normal Increasing trend

(zoom)

Cyelic Downward shift - ~
Decreasing Upward shift

trend

Figure 4: Examples of analyzed times series.

This database has been chosen because each class can be associated to a
typical kind of evolution of a real system, and therefore to the drift of its
model. Each class is defined by 100 control charts and each one is defined by
60 samples.

3.1 List of discriminators

Before trying to classify time series, it is necessary to find discriminators. It
has been chosen here to use:

e the standard deviation,
e the slope of the linear regression,

e the maximum difference between two consecutive coefficients of the local
identification with ARX model[12] of the time series.

Although using the mean value could have been an easy way to discriminate
the time series, it has been chosen not to take it into account. This corresponds
to the fact that a long term evolution of the mean value is normal for some
real-world systems.
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3.2 Results

Figure 5 shows the result of the whole classification process using the following
thresholds: pmin = 0.3, thmaez = 0.6 and o = 0.08.
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Figure 5: Example of classification Figure_6: nAnjlbi.é;u(;us.curves

To have an idea of the quality of the identification, it is necessary to give
the percentage of well classified input vectors and the number of prototypes.
In the presented case, 95.44% of the inputs vectors are in the right class, and
22 prototypes are obtained. All misclassified curves are “Shift” recognized as
“Trend”; examples are given in figure 6. The figure 7 shows the benefits of
our network in terms of number of prototypes, (17 with 2d projection). Using
the “Gaussian RBF” SVM algorithm [13] would have led to more numerous
prototypes (31) for good separation of the 6 classes (width of rbf =1.1).
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Figure 7: 2D illustrations of the prototypes for our method and SVM algorithm.

4 Conclusions

A new learning process has been presented. This process makes possible the
creation of new prototypes and new classes when necessary. It has been shown
that the number of prototypes is quite low for an efficient classifier. Its ability
to adapt its structure (prototypes and classes) when new kind of data appears
allows online classification; So, neither initial nor a priori representation data
are needed.

Future studies will address improvements of the architecture such as initializa-
tion using the EM algorithm, merging of prototypes, and improvement of the
class merging process. Other discriminators will also be taken into account.
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