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Abstract.  Radial basis function networks are usually trained according to a
three-stage procedure.  In the literature, many papers are devoted to the
estimation of the position of Gaussian kernels, as well as the computation of the
weights.  Meanwhile, very few focus on the estimation of the kernel widths.  In
this paper, first, we develop a heuristic to optimize the widths in order to
improve the generalization process.  Subsequently, we validate our approach on
several theoretical and real-life approximation problems.

1. Introduction

Artificial neural networks (ANN) are largely used in applications involving
classification or function approximation.  Lately, it has been proved that several
classes of ANN are universal function approximators [1].  Therefore, they are widely
used for function interpolation [2][3].
Among the ANN classes, we find the radial basis function (RBF) networks and the
multi-layer perceptrons (MLP).  Both are multi-layered networks and they can be
considered as connectionist models.  Both need to be trained by a sufficiently large
data set to learn the process to approximate.  Even though, RBF methods differ from
MLP in their training procedure.
MLP are trained by supervised techniques: the set of weights are computed by solving
a non-linear constrained equation set.  On the contrary the training of RBF networks
can be split into an unsupervised part and a supervised but linear part.  Unsupervised
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updating techniques are straightforward and relatively fast.  Meanwhile its supervised
part consists in solving a linear problem, which is therefore also fast.  The training
methods used for RBF networks are thus substantially less time and resources
consuming [3].

2. Radial basis function network

A RBF network is a three-layered ANN.  Consider an unknown function

ℜ→ℜ df : )(x .  In a RBF network, f(x) is approximated by a set of d-dimensional

radial activation functions.  Those radial basis functions are centred on well-
positioned data points, called centroids.  The centroids can be regarded as the nodes of
the hidden layer.  Generally, the position of the centroids and the widths of the radial
basis functions are obtained by an unsupervised learning rule, whereas the weights of
the output layer are calculated by a supervised, single-shot process using pseudo-
inverse matrices or singular value decomposition.
Suppose we want to approximate function ƒ(x) with a set of M radial basis functions
ϕj(x), centred on the centroids cj and defined as:

( ) ( )jjj
d

j cxx −=ℜ→ℜ φφφ   : : , (1)

where  .  denotes the Euclidean distance, .1 and Mjd
j ≤≤ℜ∈c

The approximation of the function ƒ(x) may be expressed as a linear combination of
the radial basis functions:

( ) ( )∑
=
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M

j
jjjf

1

ˆ cxx φλ , (2)

where λj are weight factors.
A typical choice for the radial basis functions is a set of multi-dimensional Gaussian
kernel:
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where jσ  is the width factor of the jth hidden unit in the hidden layer.

3. Training of a Radial basis function network

Once the number and the general shape of the radial basis functions ϕj(x) is chosen,
the RBF network has to be trained properly.  Given a training data set T of size NT,

{ })(:1 ,),( ppT
d

pp fyNpyT xx =≤≤ℜ×ℜ∈= , (4)

the training algorithm consists of finding the parameters cj, σj and λj, such

that )(ˆ xf fits the unknown function ƒ(x) as close as possible.  This is realised by

minimising a cost function.
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3.1. Error criterion

After the best-fit function is calculated, the performance of the RBF network is
estimated by computing an error criterion.
Consider a validation data set V, containing NV data points:

{ })( :1 ,),( qqV
d

qq fyNqyV xx =≤≤ℜ×ℜ∈= . (5)

The error criterion can be chosen as the mean square error:

∑
=

∧






 −=
VN

q
qq

V
V fy

N
MSE

1

2

)(
1

x , (6)

where yq  are the desired outputs.

3.2. Training algorithm

Often, the training algorithm is decoupled into a three-stage procedure:
1. determine the centres cj of the Gaussian kernels,
2. compute the widths of the Gaussian kernels σj,
3. compute the weights λj.

During the first two stages only the inputs xp of the training data set T are used.  The
parameters are thus adapted according to an unsupervised updating rule.  In the third
step the weights are updated with respect to the corresponding desired outputs.
Meanwhile cj and σj remain fixed.

In the literature, several algorithms and heuristics are proposed for the computation of
the centroids cj [4][5] and the weights λj [3][6].  The centroids are estimated
according to a vector quantization scheme, like for example competitive learning,
while the weights are found by solving equation (2).  This equation is linear since the
radial basis functions ϕj(x) are fixed.  However, very few papers are dedicated to the
optimization of the widths σj of the Gaussian kernels.

4. Width factors

Typically two alternatives are considered.  The first one consists in taking the widths
σj equal to a constant for all Gaussian functions [7][8][9].  In [9], for example, the
widths are fixed as follows:

M

d

2
max=σ , (7)

where M is the number of centres and dmax is the maximum distance between those
centres.  Such a procedure fixes the degree of overlapping of the Gaussian kernels.  It

allows to find a compromise between locality and smoothness of the function ).(ˆ xf

This choice would be close to the optimal solution if the data were uniformly
distributed in the input space, leading to a uniform distribution of the centroids.
Unfortunately most real-life problems show non-uniform data distributions.  The
method is thus inadequate in practice and an identical width for all Gaussian kernels
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should be avoided, since their widths should depend on the position of the centroids,
which in turn depend on the data distribution in the input space.

The second option consists in estimating the width of each Gaussian function
independently.  This can be done, for example, by simply computing the standard
deviation of the distance between the data and their corresponding centroid.
Reference [10] suggests an iterative procedure to estimate the standard deviation.
Moody and Darken [11], on the other hand, proposed to compute the width factors σj

by the r-nearest neighbours heuristic:
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where the ci are the r-nearest neighbours of centroid cj.  A suggested value for r is 2.
This second class of methods offers the advantage of taking the distribution variations
of the data into account.  In practice, they are able to perform much better, as they
offer a greater adaptability to the data than a fixed-width procedure.  Even though, as
we will show next, the widths values remain sub-optimal.

In this paper we propose to unite both approaches.  First we compute the standard
deviations σj

c of each data cluster1 in a classical way.  Subsequently we determine a
width scaling factor q, common to all Gaussian kernels.  The widths of the kernels are
then defined as:

c
jj qj σσ =∀  , , (9)

By inserting the width scaling factor, the approximation function )(ˆ xf is smoothed

such that the generalization process is more efficient, as we allow an optimal
overlapping of the Gaussian kernels.

Unfortunately, the optimal width factor q depends on the function to approximate, the
dimension of the input set, as well as on the data distribution.  The choice of the
optimal width factor is thus obtained by a heuristic.

Consider a width factor set Q.  We evaluate, successively, for each value Qql ∈  the

error criterion, chosen as the mean square error.  The optimal qopt corresponds to the
smallest error:

)()( , lVoptV qMSEqMSEl ≤∀ . (10)

When several minima appear, it is usually recommended to choose the one
corresponding to the smallest width scaling factor.  Indeed, large ql have to be avoided
for complexity, reproducibility and/or numerical instability.  This will be illustrated in
the next section, in which we prove the effectiveness of our approach on several
artificial and real-life problems.

                                                          
1 A cluster is a region associated to each centroid.  Such a region is usually called a
“Voronoi zone”.
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5. Results

In this section, we show the need to optimise the widths of the Gaussian kernels in
order to improve the generalization process, and we compare our heuristic approach
to the methods proposed by Moody & Darken [10] and S. Haykin [11].

Consider NT data selected randomly according to a 1D sine wave:
[ ] )12sin(:1 ,0 1 xyx =∈

The function and its corresponding approximation are plotted in figure 2.  In figure 3,
we have plotted the MSEV in function of q.  The experiment was repeated 50 times.
One can notice that in some cases a second minimum appears for higher q.  Though,
the second minimum is rather fortuitous than systematic, as the average curve
confirms.  In addition, when we improve the learning process by increasing the size of
the learning data set T, the non-systematic minimum vanishes (figure 4 and 5).  The
optimal value for q is thus taken as the first minimum, i.e. approximately 2.

A second data set is given by:

[ ] ( ) ).sin(21:4 ,4 22
2 xxxyx −++=−∈

The function and the RBF approximation are illustrated in figure 6, while its MSEV is
plotted in figure 7.  Here again we observe two minima.  This time, however, both are
systematic, as the average curve shows.  Nevertheless, both minima are of a different
type.
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Figure 2: 1D sine wave and its approximation by a
RBF network (5 centroids).
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Figure 3: MSEV (--) and mean curve (thick line) in
function of q for the 1D sine wave (NT = 400).
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Figure 4: MSEV (--) and mean curve (thick line) in
function of q for the 1D sine wave (NT = 1400).
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Figure 5: MSEV (--) and mean curve (thick line) in
function of q for the 1D sine wave (NT = 2000).
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The first minimum corresponds to a local decomposition of the function in a sum of
Gaussian functions (figure 8).  This interpretation is consistent with classical RBF
network theory.
The second one, on the contrary, corresponds to a non-local decomposition of the
function (figure 9).  As a consequence, the weights λj turn out to be enormous in
absolute value (see the 105 scale in figure 9) in order to approximate the non-flat
slopes.  This leads to a greater complexity of the RBFN, which expresses itself by a
greater width scaling factor (greater widths).  In addition, large λj increase numerical
instability.  Once more, the optimal width factor is the one related with the smaller q.

In table I, we have compared our heuristic approach to the approaches of Moody &
Darken [10] and S. Haykin [11], which we quoted in section 4.  In both examples our
approach exhibits the best compromise between accuracy and complexity.  Indeed, we
obtain small mean square errors combined with greater locality and small λj.

The next three examples are real-life problems, in which ANN were used to model an
unknown process.  In those problems, the input space is generally multi-dimensional.
The first one aims to determine the water content in a dried milk sample.  The training
set contains 27 dried milk samples.  Each sample contains 7 spectral data representing
the input data of the network and the corresponding desired output represents the
water content.  On the other hand, the validation set contains only 10 dried milk
samples.

Figure 10 shows the curve of the mean square error according to the width scaling
factor.  The choice of the optimal width scaling factor corresponds to the minimum of
the mean square error.
The second real-life problem consists of developing a black-box model that predicts
the position of phosphenes in the visual field of blinds as reported in [12].
Phosphenes are little lightning spots, dots or stripes appearing in the visual field of
blind patients when their optic nerve is electrically stimulated.  When we observe the
mean square error, we find an optimal width scaling factor for small q (figure 11).
Finally, RBF networks can be used for time series prediction.  The principle consists
in predicting the next value in the sequence, as a function of the previous values.  A
well-known time example is the SantaFe A [13].  In this sequence the last six values
are used to predict the new one.  In figure 12, one can notice that a minimal MSEV is
obtained for a value of 13 of the width scaling factor.  It should be mentioned, that, in
this case, no local decomposition of the function seems to appear.  Indeed, the optimal
q is at a high value.  As a consequence, numerical instability can already be observed.

Method MSEv Locality
Moody and Darken 0.0844 High

y1 S. Haykin 0.1334 Medium
heuristic 0.0533 High

Moody and Darken 24.7994 High
y2 S. Haykin 5.3929 Low

heuristic 18.8417 High
Table I : Comparison of the performances of our heuristic and classical approaches.
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Figure 6: Function y2 and its approximation by a
RBF network (20 centroids).
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Figure 7: MSEV (--) and mean curve (thick line) in
function of q for y2.
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Figure 8: Local decomposition of y2.
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Figure 9: Non-local decomposition of y2.
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Figure 10: Prediction of the water content in the
dried milk.
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Figure 11: Phosphene prediction.
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Figure 12: Prediction of financial time series.
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6.  Conclusion

In this paper we have proposed a heuristic, which allows optimizing the widths of the
Gaussian kernels in RBF networks.  First we compute the standard deviation of each
data cluster.  Subsequently we determine a common width scaling factor for the
Gaussian kernels.  The choice of the optimal width scaling factor corresponds to the
smallest mean square error.  When several minima appear, it is usually recommended
to choose the one corresponding to the smallest width scaling factor in order to avoid
instability.  The results obtained by using this technique show that fixing the width of
the Gaussian kernels a priori or simply by computing the standard deviation of the
clusters is sub-optimal.
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