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Abstract. Since support vector machines for pattern classification
are based on two-class classification problems, unclassifiable regions ex-
ist when extended to n (> 2)-class problems. In our previous work, to
solve this problem, we developed fuzzy support vector machines for one-
to-(n−1) classification. In this paper, we extend our method to pairwise
classification. Namely, using the decision functions obtained by training
the support vector machines for classes i and j (j �= i, j = 1, . . . , n), for
class i we define a truncated polyhedral pyramidal membership function.
The membership functions are defined so that, for the data in the classi-
fiable regions, the classification results are the same for the two methods.
Thus, the generalization ability of the fuzzy support vector machine is
the same with or better than that of the support vector machine for pair-
wise classification. We evaluate our method for four benchmark data sets
and demonstrate the superiority of our method.

1 Introduction

Support vector machines outperform conventional classifiers especially when
the number of training data is small and there is no overlap between classes
[1, pp. 47–61]. For the conventional support vector machines, an n-class prob-
lem is converted into n two-class problems and for the ith two-class problem,
class i is separated from the remaining classes. By this formulation, however,
unclassifiable regions exist. To solve this problem, Kreßel [2] converts the n-
class problem into n(n−1)/2 two-class problems which cover all pairs of classes.
This method is called pairwise classification. By this method also unclassifiable
regions remain. To resolve unclassified regions for the pairwise classification,
Platt et al. [3] proposed decision-tree-based pairwise classification. Unclassifi-
able regions are resolved but decision boundaries are changed as the order of
tree formation is changed. To solve this problem we proposed fuzzy support
vector machines for one-to-(n − 1) classification [4].
In this paper, we extend our method to pairwise classification. Namely,

using the decision functions obtained by training the support vector machines
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for pairs of classes, for each class we define a truncated polyhedral pyramidal
membership function. The membership functions are defined so that, for the
data in the classifiable regions, the classification results are the same with
pairwise classification.
In Section 2, we explain two-class support vector machines, and in Section 3

we discuss fuzzy support vector machines for pairwise classification. In Section
4 we compare performance of the fuzzy support vector machine with that of
the support vector machine for pairwise classification.

2 Two-class Support Vector Machines

Let m-dimensional inputs xi (i = 1, . . . , M) belong to Class 1 or 2 and the
associated labels be yi = 1 for Class 1 and −1 for Class 2. If these data are
linearly separable, we can determine the decision function: D(x) = wt x + b,
where w is an m-dimensional vector, b is a scalar, and

yi D(xi) ≥ 1 for i = 1, . . . , M. (1)

The distance between the separating hyperplane D(x) = 0 and the training
datum nearest to the hyperplane is called the margin. The hyperplane D(x) =
0 with the maximum margin is called the optimal separating hyperplane.
Now consider determining the optimal separating hyperplane. The Eu-

clidean distance from a training datum x to the separating hyperplane is given
by |D(x)|/‖w‖. Thus assuming the margin δ, all the training data must satisfy

ykD(xk)
‖w‖ ≥ δ for k = 1, . . . , M. (2)

If w is a solution, aw is also a solution where a is a scalar. Thus, we impose
the following constraint:

δ ‖w‖ = 1. (3)

From (2) and (3), to find the optimal separating hyperplane, we need to find
w with the minimum Euclidean norm that satisfies (1).
The data that satisfy the equality in (1) are called support vectors.
Now the optimal separating hyperplane can be obtained by minimizing

1
2
‖w‖2 (4)

with respect to w and b subject to the constraints:

yi (wt xi + b) ≥ 1 for i = 1, . . . , M. (5)

We can solve (4) and (5) converting them into the dual problem. The above
formulation can be extended to nonseparable cases.
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Figure 1: Unclassified regions by the pairwise formulation

3 Fuzzy Support Vector Machines

3.1 Conventional Pairwise Classification

Since the extension to nonlinear decision functions is straightforward, to sim-
plify discussions, we consider linear decision functions. Let the decision function
for class i against class j, with the maximum margin, be

Dij(x) = wt
ij x+ bij , (6)

where wij is the m-dimensional vector, bij is a scalar, and Dij(x) = −Dji(x).
For the input vector x we calculate

Di(x) =
n∑

j �=i,j=1

sign(Dij(x)), (7)

where
sign(x) =

{ 1 x > 0,
0 x ≤ 0 (8)

and classify x into the class

arg max
i=1,...,n

Di(x). (9)

If (9) is satisfied for plural i’s, x is unclassifiable. In the shaded region in
Fig. 1, Di(x) = 1 (i = 1, 2, and 3). Thus, the shaded region is unclassifiable.

3.2 Introduction of Membership Functions

Similar to the one-to-(n − 1) formulation [4], we introduce the membership
functions to resolve unclassifiable regions while realizing the same classification
results with that of the conventional pairwise classification. To do this, for the
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Figure 2: Extended generalization regions

optimal separating hyperplane Dij(x) = 0 (i �= j) we define one-dimensional
membership functions mij(x) on the directions orthogonal to Dij(x) = 0 as
follows:

mij(x) =
{
1 for Dij(x) ≥ 1,
Dij(x) otherwise. (10)

Usingmij(x) (j �= i, j = 1, . . . , n), we define the class imembership function
of x using the minimum operator:

mi(x) = min
j=1,...,n

mij(x). (11)

Equation (11) is equivalent to

mi(x) = min
(
1, min

j �=,i,j=1,...,n
Dij(x)

)
. (12)

The shape of the membership function is shown to be a truncated polyhedral
pyramid [1]. Since mi(x) = 1 holds for only one class, (12) reduces to

mi(x) = min
j �=,i,j=1,...,n

Dij(x). (13)

Now an unknown datum x is classified into the class

arg max
i=1,...,n

mi(x). (14)

Thus, the unclassified region shown in Fig. 1 is resolved as shown in Fig. 2.

4 Performance Evaluation

We evaluated our method using blood cell data [5], thyroid data1, hiragana
data with 50 inputs, and hiragana data with 13 inputs listed in Table 1 [1].

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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Table 1: Benchmark data specification

Data Inputs Classes Training data Test data

Blood cell 13 12 3097 3100

Thyroid 21 3 3772 3428

Hiragana-50 50 39 4610 4610

Hiragana-13 13 38 8375 8356

To compare our classification performance with other pairwise classification
method, we used the software developed by Royal Holloway, University of Lon-
don2 [6]. The software resolved unclassifiable regions caused by the pairwise
classification.
We used polynomial kernels: (1 + xx′)d and RBF kernels: exp(−γ‖x −

x′‖2). To make comparison fair, we selected the values of d and γ so that the
recognition rates of the training data became 100%. Table 2 lists the recognition
rates of the test data for different kernels. In the table PW, PWM, and FPW
mean pairwise classification, pairwise classification with some resolution by
University of London, and our fuzzy pairwise classification, respectively. In
most cases, the recognition rates by FPW are better than those by PW and
PWM. FPW outperformed PWM for 12 cases out of 16 cases. The improvement
of FPW over PW was especially evident for the blood cell data set, which is a
very difficult classification problem.

5 Conclusions

In this paper, we proposed fuzzy support vector machines for pairwise clas-
sification that resolve unclassifiable regions caused by conventional support
vector machines. In theory, the generalization ability of the fuzzy support vec-
tor machine is better than that of the conventional support vector machine.
By computer simulations using four benchmark data sets, we demonstrated
the superiority of our method over the support vector machines for pairwise
classification.
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