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Abstract. Traditionally, nonlinear principal component analysis
(NLPCA) is seen as nonlinear generalization of the standard (linear)
principal component analysis (PCA). So far, most of these generaliza-
tions rely on a symmetric type of learning. Here we propose an algorithm
that extends PCA into NLPCA through a hierarchical type of learning.
The hierarchical algorithm (h-NLPCA), like many versions of the sym-
metric one (s-NLPCA), is based on a multi-layer perceptron with an
auto-associative topology, the learning rule of which has been upgraded
to accommodate the desired discrimination between components.

With h-NLPCA we seek not only the nonlinear subspace spanned by the
optimal set of components, ideal for data compression, but we give par-
ticular interest to the order in which these components appear.

Due to its hierarchical nature, our algorithm is shown to be very efficient
in detecting meaningful nonlinear features from real world data, as well
as in providing a nonlinear whitening. Furthermore, in a quantitative
type of analysis, the h-NLPCA achieves better classification accuracies,
with a smaller number of components than most traditional approaches.

1 Introduction

When using any type of principal component analysis (PCA), linear or non-
linear, it is important to distinguish between applications where a mere reduc-
tion of the dimension is required and applications where the identification of a
particular set of features, based on specific criteria, is important.

In the first set of applications, with clear emphasis to denoising and data com-
pression, only a subspace with high descriptive power is sought. The individual
features need not be unique. The only requirement is that the subspace ex-
plains, in a mean square error (MSE) sense, as much information contained in
the data as possible.

Several neural network strategies exist that produce linear or nonlinear sub-
space PCA decompositions. However, such a decomposition is illposed in the
sense that there are many possible solutions. Here we propose to enforce a
hierarchical order of the principal components which yields essentially uncor-
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related features. Scaling these features to unit variance we obtain a whitening
(sphering) transformation, which is a useful preprocessing step, for applications
such as regression, classification or blind separation of sources.

A good algorithmic implementation of the hierarchical PCA should fulfill two
important properties: scalability and stability. The former means that the first
n components explain as much as possible of the variance in a n dimensional
subspace of the data. The latter means that the i-th component of a n feature
solution is identical to the i-th component of a m feature solution (m # n).
Unlike the standard linear autoencoder, true PCA is an example of such hier-
archical methods. Kernel PCA [6] is another algorithm that presents most of
the hierarchical requirements, as it performs true PCA on a (nonlinear) fea-
ture space. The principal curves algorithm [2], however, behaves closer to the
standard autoencoder, presenting no hierarchy.

Linear autoencoders will give hierarchically ordered features by training se-
quentially (deflationary), extracting the next feature on the remaining vari-
ance/error. However this does not work sufficiently in the nonlinear case. The
remaining variance can not be considered regardless of the nonlinear mapping.
In this paper we introduce a new hierarchical nonlinear PCA algorithm, de-
noted as h-NLPCA [7]. As a true nonlinear extension of PCA, this h-NLPCA
is stable and fully scalable.

Oja’s nonlinear PCA learning rule [5] should not be compared with the
h-NLPCA, as it is, de facto, a linear algorithm with nonlinear training.

2 The algorithms
2.1 Autoencoder and linear PCA

The autoencoder, also known as auto-associative neural network or bottleneck
network, is a multi-layer perceptron, with as many inputs as outputs and a
smaller number of hidden feature units. During training, the targets for the
output units are set to be equal to the inputs. The weights in the network are
then taught to minimize the square error of the reconstruction. Because of this
learning strategy, it can be shown that the linear autoencoder, with n features,
converges to the n-th dimensional PCA subspace [1]. Note that in this learning
configuration, the coded features have no particular order.

2.2 From linear to nonlinear PCA
An obvious extension of the linear autoencoder consists in the introduction of
a nonlinear mapping by adding nonlinear hidden layers. This strategy is at the
heart of the standard (often called symmetric) nonlinear principal component
analysis network (s-NLPCA) [3], see Figure 1.

Figure 1: Five layer nonlinear autoencoder network
([3-4-2-4-3]). The mappings at input and output are
nonlinear, whereas the three middle layers constitute a
encoding decoding standard linear encoder.
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The s-NLPCA, as stated in the introduction, has no feature discrimination
power. It is, therefore, mainly used to determine a nonlinear PCA subspace.
There are two strongly related ways to introduce hierarchy constraints to
the feature space. In much the same way as in linear PCA, one is to force
the i-th feature to account for the i-th highest variance projection. An-
other strategy would be to search in the original data space for the smallest
mean squared reconstruction error while using the first i features. The former
may be harder to solve than the latter, due to bounding conditions. Hence,
we will present a learning strategy that focuses on the reconstruction MSE,
E = dLN Zg Zz(aﬁj — #7)?, where z and # are, respectively, the original and
the reconstructed data. N is the number of samples, d is the dimension. For
simplicity, we will restrict our discussion to the case of two dimensional feature
space. All the conclusions can be generalized to any other dimension.

E; and FE; » are the mean reconstruction errors when using, respectively, only
the 1st or both the 1st and the 2nd features. In order to perform the h-NLPCA,
we have to impose not only min F; 5 (as in the s-NLPCA), but also min Fj.
This can be done by minimizing the hierarchical error: Eg = E; + Ej ».

Yet, we may want to give a stronger emphasis to optimal single or subspace
feature explanations. This trade-off could be balanced by weighting the error
terms F; and Ej » by use of a hyper-parameter a:

Ey =aF; + ELQ ; o€ (0,00)

However, selecting the optimal « increases the computational costs while the
performance gain is moderate. Therefore we set « to 1 in all our experiments,
which robustly balances the trade-off as shown in Figure 2 for star data.

0.44 E1 + Eq2

Figure 2: Dependency between the errors and
the hyper-parameter a for a nonlinear five-layer
autoencoder ([19-10-2-10-19]). The medians of 100 By
sweeps are plotted. The left side (corresponding to
a — 0) is equivalent to a 2 dimensional encoding

of a ssNLPCA network. The right side (@ = 00) o1 E12
is equivalent to the standard NLPCA with a single on
unit in the feature layer. e wa 1 4 16

Hyper-parameter o

For training of the h-NLPCA, as with its symmetric counterpart, we used con-
jugate gradient descent. Yet, at each training iteration, the single error terms
E,, E; > have to be calculated separately. This is performed in a s-NLPCA
fashion by networks with one or two units in the feature layer, respectively. The
gradient VEx will be the sum of the single gradients VEg = aVE; + VE, 5.

If a weight w; does not exist, ‘2,51_ is set to zero.

A weight decay regularizer needs to be added: E = Eg +v ), w?. In most ex-
periments, v = 0.001 was a good choice. Furthermore, to achieve more robust
results, the weights of the nonlinear layer were initialized such that the sig-
moidal nonlinearities worked in a linear regime ,which corresponds to starting
the h-NLPCA network with the simple PCA solution.
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3 Experiments

To give experimental illustrations of the performance of h-NLPCA, we mostly
used two different data sets with clear nonlinear behaviors. The first consisted
of 19 dimension spectral information, gathered from 487 stars (details in [8]).
The second data set is based on electromyographic (EMG) recordings for dif-
ferent muscle activities (labeled as 0, 10, 30, 50 and 70% of maximal personal
strength). The one dimensional EMG is then embedded into a d dimensional
space and analyzed as a recurrence plot [10]. Our data consisted then of 10
recurrence qualification analysis (RQA) for 35 samples (the 5 force levels for
each of the 7 subjects). For more details on this data set, see [4].

3.1 Detecting nonlinearities

Figure 3 shows how h-NLPCA manages to correctly extract the nonlinear char-
acteristics in both the Star and the EMG data. Note that, if in the first example
the nonlinearities seem to be mild, it is clearly not the case for the second. Fur-
thermore, in the EMG plotting, it seems that most of the variance is explained
by the first two features.

Figure 3: The first three non-
linear components plotted into the
space of the first three linear PCA
components. Each grid represents
two of the three nonlinear fea-
tures, while the third is set to zero.
These nonlinear components are
extracted by using the hierarchical
NLPCA. Ex =E1+E12+ E123 Star data EMG data
(v is set to 1).

3.2 Feature extraction

Figure 4 plots the two first features (left and right column) against the 5 force
levels for both linear PCA and h-NLPCA. As expected, the linear projections
relate to the force level only in a nonlinear manner, whereas the first feature in
the h-NLPCA shows clear linear relation to it. Note that the second nonlinear
feature bears no relation to the force, as probably all the force information is
explained by the first nonlinear component.
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Figure 4: Linear and nonlinear PCA features, plotted against the 5 force levels.
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3.3 Nonlinear whitening (sphering)

If the nonlinearly uncorrelated features are scaled to unit variance, one could
say that we have some sort of nonlinear whitening, or whitening in a nonlinear
feature space. Figure 5 shows how h-NLPCA performs in this whitening task.
Three dimensional data is generated in a 3/4 circle with added noise. For com-
parison purposes, we also show the linear and the s-NLPCA whitening. Note
that, as expected, both the linear PCA and s-NLPCA have not been able to
deal with the nonlinearity, whereas h-NLPCA normalizes the data to an almost
spherical distribution.

(linear) PCA s-NLPCA h-NLPCA

Figure 5: PCA, s-NLPCA, and
h-NLPCA whitening of nonlinear
correlated noisy data. On the top
row are shown the joint distribu-
tions of the data along the first
two features. The grids repre-
sent the coordinates of the feature
space. On the bottom row are the
whitening results, plotted on that
same feature space.

PCA whitening s-whitening h-whitening

3.4 Classification accuracy

A final experiment was carried out in order to see if the information contained
in the h-NLPCA features can be used for classification purposes. Here, we have
generated a 3 dimensional set of 3000 samples, belonging to 4 classes, with two
dicotomical classifications (resembling the problem of male (M) and female (F)
specimens of species A and B). The data was then nonlinearly transformed (2
directions using quadratic nonlinearities, whereas the remaining used a tanh).
The classification was performed by a linear Support Vector Machine [9].

classification 'F’ to 'M’ classification 'A’ to 'B’
# features 1 2 3 10 | 20 1 2 3 10 20
linear PCA 40.6 | 30.3 | 30.3 | — — 48.3 | 50.0 | 32.0 — —
s-NLPCA 45.9 | 31.3 — — — 50.0 | 50.0 — — —
h-NLPCA 485 | 17.7 | 17.7 | — — 50.0 | 50.0 | 13.9 — —
kPCA o010 48.5 | 38.3 9.0 3.5 | 3.5 50.0 | 50.0 | 45.8 | 13.2 | 13.0
kPCA ¢0.5 || 48.5 | 39.8 | 39.7 | 3.5 | 1.4 || 50.0 | 50.0 | 50.0 | 35.5 | 2.2

Table 1: Testing error rates for an artificial data set using linear Support Vector Ma-
chines trained on the principal components of several feature extraction algorithms.

From Table 1, it is clear that one needs at least 2 features to descriminate
between sex, and a 3rd for the species. In both classifications, h-NLPCA gives
the best accuracy for the smallest number of components. As expected, linear
PCA and s-NLPCA produced fairly poor classifications. The advantage of ker-
nel PCA lies in the possibility of using very high dimensional feature spaces in
which its classification performace improves significantly.
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4 Conclusion

We have introduced a new algorithmic approach to nonlinear PCA. This is
based on the traditional autoencoder MLP, but has a hierarchical type of learn-
ing strategy. With such an algorithm we showed that it is possible to correctly
detect nonlinearities in the data. Furthermore, due to it ordered nature, we
can obtain the standard nonlinear PCA subspace, as well as the extraction of
meaningful nonlinear orthogonal features.

It could be argued that the h-NLPCA and the kernel PCA share the same phi-
losophy, as both of them perform some sort of nonlinear mapping to a feature
space, where both perform true linear PCA representation of the data. Yet ker-
nel PCA seems unable to recover the feature associated with the force, as the
h-NLPCA did. One possible explanation for such a result is that kernel PCA
was not developed for such tasks. On the other hand, the nonlinear mapping
from h-NLPCA is tuned by the data, whereas the one from the kernel PCA is
decoupled from the data. It should be expected that a particular setting for
the kernel PCA would reach comparable results, but such a search for optimal
kernel transformation exceeds the scope of this paper.
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