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Abstract.  One of the most important difficulties in using neural networks
for a real-world problem is the issue of model complexity, and how affects
the generalization performance. We present a new algorithm based on
multiple comparison methods for finding low complexity neural networks
with high generalization capability.
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1. Introduction

The task of learning from examples is to find an approximate definition for an

unknown function f(x) given training examples of the form <x i,f(xi)>. The goal of
network training is not to learn an exact representation of training data itself, rather
to build a statistical model of the process which generates the data.  So the network
will exhibit good generalization, that is, make good predictions of new inputs [1].

It is well known that choosing how many hidden units should have a neural
network is a crucial matter in order to achieve good generalization behaviour.  A
network with too few hidden units gives poor predictions for new data, because it
has too little flexibility (it has a large bias). On the other hand, too many hidden
units will give us poor generalization because it fits too much to the noise on
training data (it has a large variance). The best generalization is therefore obtained
when the trade-off between poor approximation and overfitting is achieved.

In this paper we propose a statistical method in order to obtain a neural network
with a low number of hidden units, but with a great power of generalization. This
method, which is based on previous works ([6], [9]), suggests using multiple
comparison techniques and repeated measures procedures.

The plan of the paper is as follows.  In section 2 we briefly introduce basic
concepts, such as power of a test, parametric and non-parametric tests, repeated
measures and multiple comparisons procedures. Section 3 describes the proposed
methodology and the results obtained when applied on RBF and BP networks is
shown in Section 4.
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2. Basic terminology

The first step in the decision-making procedure is to state the null hypothesis
(H0), which says that any difference is due to chance.  It is usually formalized for the
express purpose of being rejected. If it is rejected, the alternative hypothesis (H1) is
supported.  Our null hypothesis is that two networks with different complexity will
give similar performance on unseen data.

If a statistical test yields a value whose associated probability of occurrence
under H0 is equal to or less than some small probability, which is called level of
significance (α), we will reject H0.

Each statistical test is based on certain assumptions about the population from
which the data are drawn.  If a particular statistical test is used to analyze data
collected from a sample that does not meet the expected assumptions, then the
conclusions drawn from the results of the test will be flawed ([2], [10]). Parametric
tests assume that the data were sampled from a particular form of distribution, while
nonparametric tests do not make such assumption. Parametric tests are more
powerful and should be used if possible (the power of a test is the probability of
rejecting H0 when it is in fact false).

There are two basic designs for comparing k samples ([5], [8], [10], [11]).  In the
first design, k independent samples, not necessarily of the same size from each
population are analyzed. The second design, k related samples of equal size are
matched according to some criterion which may affect the values of the
observations.  For example, in our method we analyze the errors of k neural
networks with different complexities which are trained with the same training
samples in order to discover if the differences between networks are significant.
Statistical tests for related samples are shown in Table 1.

Parametric Nonparametric
k Test Assumptions Test

2 t paired test
�  The difference scores are

independently drawn from a
normal distribution

Wilcoxon
matched pairs

test

> 2
Repeated
measures

ANOVA test

�  The k error measures for each
training sample set are drawn
from a normal distribution

�  Compound symmetry /
sphericity [4] about the
variance-covariance matrix

Friedman test

Table 1: Statistical parametric and non-parametric tests for k related samples.

When repeated measures ANOVA or Friedman tests are significant, it indicates
that at least two of the groups in the analysis are significantly different, but not
which are. At that point multiple individual comparisons should be computed on
pairs of groups. The problem is that each comparison is done with the level of
significance set at probability of α, and, if a test comparison is made on each of p
comparisons, the experimentwise level of significance will be 1-(1-α)p.  Statistical
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methods to compare three or more groups while controlling the experimentwise
error are called Multiple Comparison Procedures (MCP). In this study, two
statisticians have been applied in order to control the experimentwise error rate:

•  Nemenyi  test [11] is a medium power nonparametric MCP analogous
to Tukey test, using rank sums instead of means.

•  t paired and Wilcoxon matched pairs tests with Bonferroni correction
[7] are comparison procedures whose power is highly dependent on
the number of comparisons made.

In the proposed strategy, Nemenyi test was first applied in order to minimize the
number of models which take part in the computation of the Bonferroni  factor.

3. Methodology description

In this section we propose a stepwise methodology to model selection that makes
use of MCP to keep the experimentwise error under control and exhibits good
generalization behaviour under small and large sample size situations.

The steps of the proposed method for a given dataset may be outlined as follows:
1) Take the whole data set and create b (b ≥ 30) training sets by a resampling

technique [3] taking the rest of the instances for testing.
2) Train models (neural networks) with a degree of complexity (hidden units)

ranging from 1 to k and generate b test error measures per model.
3) Apply Nemenyi test on error values and return the set S of models whose

errors are not significantly different from that corresponding to the model
with minimum error median.

4) If size(S) = 1, return S, that is to say, the model with minimum error median
and exit.

5) If repeated measures Anova assumptions are met on S, apply this test,
otherwise apply Friedman test.

6) If the null hypothesis is not rejected, select the simplest model of S and exit.
7) Apply multiple comparison procedure (t paired or Wilcoxon tests with

Bonferroni correction) on S and select the least complex model from the
subset of models that are not significantly different from the model with
minimum error median.

Some remarks concerning the method should be highlighted. First, we propose to
use error medians instead of error means to reduce outlier problems. In any case, as
training sample increases, error medians and error means tend to approach each
other. Second, let us note that all tests have been applied using α  = 5 %

4. Experimental results

After introducing the main aspects of the procedure, we now explore its
behaviour via a simulation study using two different neural networks, radial basis
function and two-layer feedforward networks. RBF were designed as having one
hidden layer for which the combination function is the Euclidean distance between
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the input vector and the weight vector.  We use the exp activation function.  The
width of the basis functions has been set to nxxmax ji 2)( −  where n is the

number of kernels.  The second layer is a linear mapping from the RBF activations
to the output nodes. BP networks were designed as having hyperbolic tangent
sigmoid transfer function in the hidden layer and linear transfer function in the
output layer and were trained using Levenberg-Marquardt algorithm.

In order to illustrate our method, we carried out a whole series of experiments on
simulated data sets.  A total of 30 data sets of several sample sizes were generated
according to the following experimental functions:

ε++= )62(10 xsiny , )2,2( +−∈x (1)

ε++−+−= 365.12.0 34 xxxy , )2,2( +−∈x (2)

where ε is gaussian noise with zero mean and variance equal to two per cent of
generalization sample standard deviation.

We trained each model with every generated data set, and estimated the
generalization errors applying each network to a large size (10000 samples) test set,
which gave us good estimations of the generalization capability of each trained
model. We then applied the stepwise strategy to each dataset in order to compare the
performance of the proposed methodology.

The results are summarized in tables 2, 3, 4 and 5.  The internal structure of each
table is the following:

•  data set size column: size of simulated training data
•  generalization columns: results of applying the method on generalization

data.  First column includes the model with minimum error median and the
second one, the least complex model from those not significantly different
from the previous one.

•  resampling columns: frequency of selection of each model when applying
the method on b=50 bootstrapped samples for each dataset. Both columns
have the same structure as described in the previous paragraph.

Generalization Resampling
Data set

size
Min Lowest

complexity
Min Lowest

complexity

75 5 5

5  (40,00 %)
     6  (30,00 %)

7  (10,00 %)
8 and 9  ( 6,67  %)

10 and 15  (  3,33 %)

     4  (76,67 %)
5  (20,00 %)
6  (  3,33 %)

500 5 5

5  (33,33  %)
6  (30,00  %)

     7  (26,67  %)
     8  (  6,67  %)

13  (  3,33  %)

5   (86,67 %)
       6   (10,00 %)

 7   (  3,33 %)

Table 2: Number of hidden units in  RBF networks trained with samples
generated from function (1).
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Generalization Resampling
Data set

size Min Lowest
complexity Min Lowest

complexity

75 3 3

3  (63,33 %)
4  (23,33 %)
5  (  6,67 %)
6  ( 6,67  %)

2  (10,00 %)
3  (86,67 %)
4  (  3,33 %)

500 3 3

3  (56,67  %)
4  (23,33  %)
5  (10,00  %)
6  (  6,67  %)
9  (  3,33  %)

3   (83,33 %)
       4   (10,00 %)

 5   (  6,67 %)

Table 3: Number of hidden units in BP networks trained with samples
generated from function (1).

Generalization Resampling
Data set

size Min Lowest
complexity Min Lowest

complexity

75 7 5

4  (  6,67 %)
     5  (26,67 %)

6  (36,67 %)
7 y 8  (13,33 %)

9  (  3,33 %)

     3  (  3,33 %)
              4  (40,00 %)

5  (50,00 %)
6  (  6,67 %)

500 7 6

5 (  3,33  %)
6 and 7 (33,33  %)

8 (13,33  %)
9 (  6,67  %)

10, 11 and 13 (  3,33  %)

5  (10,00 %)
6  (53,33 %)
7  (30,00 %)

8 and 11  (  3,33 %)

Table 4: Number of hidden units in RBF networks trained with  samples
generated from function (2).

Generalization Resampling
Data set

size Min Lowest
complexity Min Lowest

complexity

75 3 3

2  (10,00 %)
     3  (50,00 %)

4  (26,67 %)
5  (  6,67 %)

6 and 8  (  3,33 %)

     2  (30,00 %)
              3  (66,67 %)

4  (  3,33 %)

500 3 3

3 (46,67  %)
4 (16,67  %)
5 (20,00  %)
6 (10,00  %)
7 (  6,67  %)

3  (80,00 %)
4  (13,33 %)
5  (  6,67 %)

Table 5: Number of hidden units in BP networks trained with  samples
generated from function (2).

From tables 2 through 5 we have found that the behaviour of the proposed
methodology correlates very well with the actual performance on generalization
data. We found that taking the minimum of a resampling technique produces a
systematic overfitting, which is very strong independently of sample size. The
proposed methodology exhibits a slight underfitting with small-sample problems,
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which is not very dangerous, because in this situation, the gross errors always come
from overfitted decisions. On the other hand, when the sample size is large enough,
the procedure corrects the overfitting tendency when taking the minimum. The
general trend we have observed is remarkably consistent across the different
networks considered in the study.

5. Conclusions

In this work we have presented a statistical method which is based on repeated
measures and multiple comparisons procedures.  The goal of this method is to find a
neural network having the best generalization performance with a minimum
complexity. We have shown the usefulness of this methodology in order to
overcome the overfitting and underfitting problems.

Future work will address the application of the methodology to other non-linear
models, such as decision trees and different neural networks, as well as consider
other MCP and resampling techniques to improve the performance, specifically in
low sample size situations.
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