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Abstract.. This paper proposes a new complexity-penalization model selection
strategy derived from the minimum risk principle and the behavior of candidate
models under noisy conditions. This strategy seems to be robust in small
sample size conditions and tends to AIC criterion as sample size grows up. The
simulation study at the end of the paper will show that the proposed criterion is
extremely competitive when compared to other state-of-the-art criteria.
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1. Introduction

Many data modelling problems are characterized by two difficulties: the absence of
a complete a priori model of data generation process and the limited quantity of data.
When constructing statistical models for such applications, the issues of model
selection and estimation of generalization ability or prediction risk are crucial and
must be addressed in order to construct a near optimal model. Under the simplest
formulation of model selection, the idea is to define a set of candidate hypothesis
class H0 ⊂  H1⊂  ... ⊂  Hn and then choose the class which best fits the data. The notion
of best fit can be defined via an objective criterion, such as maximum a posterior
probability (MAP), minimum Bayesian information criterion (SIC), minimum
description length (MDL) or  minimum prediction risk (P). We focus on the
prediction risk as our selection criterion because it tells us how much confidence to
put in predictions produced by our best model.

This paper focuses on regression problems. Consider a set of real-valued
input/output data pairs X= {(xi, yi) i=1,..,n} generated according to a density function
(true model) plus noise yi=f(xi)+εi, where yi is the observed response (dependent
variable),  xi and εi are drawn independently with unknown distribution p(x) and p(ε),
and f(x) is an unknown function. We assume a set of hypothesis classes (candidate
models) Hm where m is the number of parameters in the models. The true model f(x)
may or not may be contained in any of these classes. One wants to find the model
g(x,θk) ∈  Hk which best approximates the data. The quality of an approximation
produced by the candidate model is measured by the loss or discrepancy measure
L(y,g(x, ,θk) between the output produced by the model g(x,θk) and the true model
f(x).
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The expected  value of the loss is called the prediction risk
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The prediction risk can not be calculated directly and must be estimated from
available data. The most standard method for estimating prediction risk is test set
validation, which includes cross-validation and bootstrap, estimates P(k) as
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where Z=(y*,x*) are N data pairs generated from the same density function  than X
which were not used in the estimation of g(x,θk). We use angled brackets 〈〉  to denote
expected values. As the size of Z increases, the expected value of the empirical risk
approaches the prediction risk. However, for many important problems, data is scarce
or expensive, making test set validation impractical or impossible. In these situations,
one must use alternative approaches that enable the estimation of prediction risk from
the empirical risk (also called resubstitution error) defined as follows:
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The first idea that comes to mind is to use the empirical risk directly to estimate
P(k). However, this idea does not work, because empirical risk typically decreases
with model complexity k. Therefore, choosing the function with minimum training
error simply leads to choosing a function from the most complex class. There are
main-stream statistics literature contains a number of reliable and computationally
cheap corrections to the empirical risk to estimate the prediction risk for the case of
quadratic loss and gaussian noise N(0,σε) which can be expressed [1][3][5] in the
general form
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where n is the sample size, k is the model complexity, and expectations are taken over
all possible training and test sets. As shown above, T(n,k) is the correction factor or
penalty term to the empirical risk for performing model selection. Taking logs
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This expression may be more usual to researchers, given that most of the
information criteria derived in the past, as AIC, AICc, [2] etc., follows a similar
scheme. By adopting the bias/variance decomposition perspective, the penalty term
can be interpreted as postulating a particular profile for the variances as a function of
model complexity. If the postulated and true profile do not mach, then systematic
underfitting or overfitting results, depending on whether the penalty terms are too
large or too small. Although the empirical risk typically decreases with model
complexity k, the prediction risk first drops and then begins to rise. This is because
the bias tend to drop with the model complexity, while the variance increases with the
model complexity. Given a sequence of models with increasing k, some model of
optimal size will minimize the prediction risk.
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2. Noise derived information criterion.

The penalty term T(n,k) only depends on the complexity and nature of the
candidates models and the training sample size.  We are assuming that the true model
is contained in the set of  candidate models, or is not very different from the nearest
candidate models. Its value will be
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In order to compute this penalty term, we should estimate the prediction risk and
the empirical risk. For the case of the quadratic loss, we have

2
,

2
,

2

2**

log

)),((
1

)),((
1

log),(
empk

estk

kii

kii

k

xgy
n

xgy
N

knC
σ

σ

θ

θ

=

−

−

=

∑

∑

This error variance is a suitable functional to measure the goodness of fit of
candidate models for the problem of fitting the Y values. The residual sum of squares
is the sum of squares of prediction error. The residual mean square is an estimate of
this error variance and as such is a suitable model selection criterion for the problem
of fitting a regression model to a data set.

If C(k,n) only depends on the complexity and nature of the candidates models, this
relation will hold for any true function f(x), then in particular it will hold for the
function f(x)=0. In this case, the true function will be nested to candidate models, and
these will all be overfitted models. Then
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Then, assuming that candidate models are linear in the parameters it is possible to get:
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So we are able to compute C(n,k) analysing the behaviour of candidate models
under a noise distribution N(0,ε). This is a very important result, because it allows us
to determine the penalty term without knowing the true variance of noise. Note that
the true noise variance is cancelled out. We may now use a Monte Carlo approach to

calculate C(n,k) from estimates of < 2
,' estkσ > and < 2

,' empkσ > using artificially generated
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noise samples. Different sets of training(size=n) and test(huge) are generated from the

gaussian distribution N(0,1), and all the models are fitted. Then 2
,' estkσ and 2

,' empkσ  for

each sample are computed and the mean is taken as an estimate of  < 2
,' estkσ > and

< 2
,' empkσ >  respectively.  Then we have
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 The maximum likelihood estimates of 2
,empkσ  is SSEk,emp /n , where SSE is the

sum of squared errors. We define the Noise Derived Information Criterion as
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If unbiased estimates of 2
,empkσ is used, the Noise Derived Information Criterion

Unbiased follows immediately
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3. Experimental results

Different and representative problems have been simulated for linear models:
polynomial fitting problem f1(x)=10*sin(3*x+6)+N(0,0.3std(f1)), univariate
autoregressive regression problem [2] f2(x)= x1+x2+x3+x4+x5+x6+N(0,1), (x1=1),
and for non linear models: neural network trained to fit a highly no linear function [6].
Different sample sizes were chosen depending on the complexity of the problems
emphasizing small samples behaviour. Different columns show the results in
ascending complexity, showing how many times each model is selected.  In order to
compare different methods, we compute how far the model chosen by the selection
strategy deteriorates from the true model, calculating the relative difference between
the true model variance (σtrue=mse(ftrue-ftrue+noise)) and the selected model variance by
the model selection strategy (σselected=mse(gselected-f

true+noise)) where ftrue is the true
function, ftrue+noise is the true function plus gaussian noise, gselected is the function
selected by the model selection strategy and mse is the mean squared error function.

true

trueselectedD
σ

σσ −=

The lower the difference, the better the generalization capabilities of the model.
This value is shown in the last row of the tables. The last column (GE) represents
those models selected by the minimum generalization error criterion computed over a
huge randomly test set. We are able to compute these values because we know the
true model and the true noise distribution The values given in the tables are the
averages over 1000 replications of simulation study for linear models and 100 for non
linear models.
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Table 1. Polynomial fitting to a sinusoidal function f1  k = polynomial orders = 1..10

SIZE=15 SIZE=20
k NDIC  NDICu  AIC   AICc   SIC     AICu GE NDIC NDICu  AIC   AICc  SIC   AICu    GE
1
2
3
4
5
6
7
8
9
10
D

    0       4             0      23          0    110       2
    0       3             0      87          0      11       1
    3     12             0      20          1      36       6
  83   109           10    108        15    116     11
912   870           94    695      159    640   232
    2       2           83    114      117      74   212
    0       0         161      31      185      13   375
    0       0         119        1      113        0   117
    0       0         177        0      149        0     35
    0       0         356        0      261        0       9
2.614  2.830  4.3e6  4.098 4.2e6  5.308  0.912

    0        0            0         1        0        3         1
    0        0            0         0        0        0         0
    0        0            0         0        0        1         1
    7      15            1       15        3      21         2
474    568          79     451      15    571     106
402    340        114     248      16    214     122
117      77        262     264    330    178     492
    0        0        137       15    113      11     167
    0        0        153         6      98        1       68
    0        0        254         0    142        0       41
1.676  1.691 1.7e3  2.438  1.6e3  2.193  0.563

SIZE=100 SIZE=500
D 0.108  0.107 0.109  0.108  0.106  0.107  0.088 0.0059 0.0062 0.0059 0.0059 0.0087 0.0062 0.0053

Table 2. Univ. autoregressive fitting to f2,  k=#vars = 1..12

SIZE=15 SIZE=20
k NDIC  NDICu  AIC   AICc   SIC    AICu  GE NDIC  NDICu  AIC   AICc  SIC  AICu   GE
1
2
3
4
5
6
7
8
9

10
11
12
D

  12        49         0       49          4     187       0
  19        67         0       67          1     133       0
  32        67         1       78          6       99       0
  68      101         1     101          5     104       3
163      162       10     160        21     129     32
676      542     173     531      276     340   662
  23        12       42      14         64         8   165
    7          0       64        0         57         0     83
    0          0       52        0         56         0     35
    0          0       81        0         72         0     11
    0          0     151        0       118         0       5
    0          0     425        0       320         0       4
0.759 1.073  3.146  1.088 2.510   1.693  0.396

   0         5          0          3         0      13       0
   1         6          0          2         1      11       0
   6       15          0          7         1      23       0
  13      31          2        22         4      33       0
  51      70          6        58       17      80     12
847    834      349      845     568    810   702
  66      35        79        51       86      28   146
  10        4        73          7       57        2     78
    5        0        87          4       52        0     31
    1        0        88          1       66        0     16
    0        0      102          0       52        0     13
    0        0      214          0       96        0       2
0.382  0.439  0.846  0.403  0.640  0.502  0.274

SIZE=25 SIZE=100
D 0.268 0.266  0.472  0.269 0.349   0.278  0.217 0.062  0.053  0.069  0.062  0.050   0.054  0.046

For non linear models, networks are trained by ordinary least-squares using
Levenberg-Marquardt algorithm. For a network with H hidden units, the weights from
the previously trained network were used to initialise H-1 of the hidden units, while
the weights for the Hth hidden unit were generated from a pseudorandom normal
distribution. This sequential network construction method creates a nested set of
networks having a monotonously decreasing training error and provides some
continuity in the model space which makes a prediction risk minimum more easily
noticeable [4]. To compute our penalty term, in order to avoid outliers, the median
was used instead of the mean. An advantage of the median over the mean, is that it is
less susceptible to the effects of outliers, and is thus more likely to be close to the
expected value for skewed distributions.
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Table 3. Non linear fitting Heavisine function (medium),  k = hidden units

SIZE=50 SIZE=100 SIZE=250
K NDIC  NDICu  AIC   AICc    SIC       GE NDIC NDICu  AIC  AICc   SIC   GE NDIC   NDICu   AIC  AICc    SIC   GE

1
2
3
4
5
6
7
8
9
10
11
12
D

  0        0           0      0        0          0
  0        0           0      0        0          1
29      38         24     38      38        21
31      42         24     42      40        26
29      18         26     19      19        23
  9        2         10       1        3        14
  2        0           3       0        0          5
  0        0           3       0        0          2
  0        0           5       0        0          3
  0        0           1       0        0          1
  0        0           2       0        0          1
  0        0           2       0        0          3
0.405   0.435   1.698  0.434   0.432     0.307

 0        0         0        0       0      0
 0        0         0        0       0      0
29      32      24      30     33     11
38      43      32      35     41     28
20      21      18      22     23     25
12        3      13      12       2     16
  1        1        4        1       1     11
  0        0        4        0       0       2
  0        0        3        0       0       2
  0        0        1        0       0       1
  0        0        1        0       0       3
  0        0        0        0       0       1
0.123  0.128  0.149   0.125  0.127   0.108

  0        0         0       0         0      0
  0        0         0       0         0      0
17      26       13     15       30      2
37      46       34     37       51      9
17      15       14     16       14    13
  9        8       13     13         4    13
  5        2         5       4         1    10
  6        3         8       6         0      8
  5        0         3       5         0      9
  0        0         3       0         0      8
  3        0         4       3         0    14
  1        0         3       1         0    14
0.078   0.074   0.079  0.077  0.076  0.052

We can see from tables 1, 2 and 3 that AIC and SIC leads to small-sample
overfitting problems The corrected versions, AICc and AICu, outperform their parent
criterion AIC from an overfitting perspective. In general, model selection methods
with strong penalty function (NDIC, NDICu, AICc, AICu) perform better, we mean,
they provide better generalization capabilities, than those with weak penalty functions
(AIC, SIC). NDIC provides the best results with small sample sizes. This is a very
important characteristic, because of the practical limitations on gathering and using
data in real-world situations.  It is observed that NDIC and NDICu underfit less than
AICc and AICu in small sample sizes. If the size of the sample is large enough, all the
methods provide similar result. NDIC penalty term tends to AIC with large samples
sizes. NDICu, AICc and AICu provide similar result with enough and large samples
sizes thus concluding that, in general, NDICu is an extremely competitive model
selection penalty function, independently of sample size. When the complexity of the
model is difficult to determine, NDIC may be used instead.
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