
RetinotopicNET:
An Efficient Simulator for Retinotopic Visual

Architectures.

Dipl. Eng. RAUL C. MUREŞAN
Nivis Research

Gh. Bilascu, Nr. 85, Cluj-Napoca, Cod 3400
ROMANIA

raulmuresan@personal.ro

Abstract. RetinotopicNET is an efficient simulator for neural architectures
with retinotopic-like receptive fields. The system has two main characteristics: it is
event-driven and it takes advantage of the retinotopic arrangement in the receptive
fields. The dynamics of the simulator are driven by the spike events of the simple
integrate-and-fire neurons. By using an implicit synaptic rule to represent the
synapses, RetinotopicNET achieves a great reduction of memory requirement for
simulation. We show that under such conditions the system is fit for the simulation
of very large networks of integrate-and-fire neurons. Furthermore we test
RetinotopicNET in the simulation of a complex neural architecture for the ventral
visual pathway. We prove that the system is linearly scalable with respect to the
number of neurons in the simulation.

Key-words: - Neural simulator; Retinotopy; Receptive fields; Event-driven;
Spikes.

1. Introduction
The evolution of neurocomputing in the last decade led to the necessity of finding

strong neural simulators to test researchers’ hypotheses. In general the approaches were
divided into two main trends. On one hand, there are the problem specific simulators that
are limited to the specialized area of their usage. Such systems have the disadvantage of
being too restrictive but their main advantage is that they can be optimized for the very
application they were created for. On the other hand, some general tools were designed
to handle more generic architectures. Still, such general architectures come, sooner or
later, to face the same problems as the specific ones. At some point the designer has to
get some degree of commitment to ensure that the system can be implemented.

Another recent trend in designing simulators takes into account more complex
models of neurons and the fact that the dynamics of the neuron is very important on
millisecond time scale. Spiking neural nets are used more and more frequently, mainly
because of their biological plausibility and the relative simplicity of their hardware
implementation. Under such circumstances, strong simulators are required to test the
architectures before implementing them in hardware.

Recent efforts of researchers led to the creation of efficient neural simulators that
can be used for generic architectures. However, they do not attempt to commit the
system to specific problems. Such a commitment could yield an increased speed of
simulation allowing the system to perform very complex tasks in real-time, on
monoprocessor machines. One approach, used in GENESIS [1] allows for the simulation
of relatively small networks, of complex, multi-compartment neurons. The system is not
fit to simulating large networks, especially when real-time is an issue. Another,
completely different approach is fit for very large networks of neurons, used in
SpikeNET [2]. SpikeNET is fit for general-purpose simulation for networks of integrate-
and-fire neurons. Mattia and Del Giudice [5] propose an algorithm, also for general-

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

purpose simulation, that takes advantage of the event-nature of spikes and also include
dynamical synapses into their model.

Our approach tries to unify some general trends in simulators and also to take
advantage of problem specific optimizations, such as the retinotopy of receptive fields in
visual areas.

2. Methods
When trying to build a neural simulator the researcher is faced with two main

problems: the amount of memory required to represent the simulation data and the time
needed for processing during dynamic updates. We can split these problems into two
categories: static problems and dynamic problems.

Static problems are mainly related to the amount of information considered when
representing the neuron parameters, on one hand, and to the representation of synapses,
on the other. Generally the system’s complexity is a function of the number of neurons
in the simulation. In terms of memory consumption, the overload of the system, due to
the representation of the neurons, increases linearly. We can give a quantitative
expression of this:

nknM neunon ⋅=)(1 (1)
where:

M1(n) – is the memory consumption induced by n neurons
kneuron – represents the memory consumption induced by one neuron’s

representation
If adding more memory can easily solve the memory overhead due to the

representation of neurons, the amount of memory required for representing explicitly the
synapses can become prohibitive. The number of synapses is a magnitude of 103 –104

greater than that of the neurons [5]. When trying to simulate networks with millions of
neurons, we are faced with important hardware limitations. Thus, synaptic representation
is the main issue in static problems.

On the other hand, dynamic problems impose even greater limitations. There are
two aspects that influence the dynamics of a simulator: the complexity of the neuron
model and the design of information transfer during neural update. In other words, the
more complex the neuron, the harder computing is required. Updating the state of every
neuron, in each iteration is completely inefficient.

We can find solutions to these problems by imposing some restrictions to the
system, as described next.

2.1. Solutions to static problems
We saw that the complexity of the neuron and the number of parameters describing

it influence both static and dynamic aspects of the simulation.
In our model we use simple integrate-and-fire neurons [6]. For simplicity reasons

no leakage has been included in the model. The amount of current leak, in the short
period the neuron's state is pooled (simulation of ultra-rapid visual tasks), can be
neglected (no rate based coding is present). Neurons receive input spikes and increase
their internal activity, until they reach a fixed threshold. The parameters of the neuron fit
the biological evidence (Fig. 1).

We use rank order coding as a neural code and every neuron has 3 parameters: an
activation level, a synaptic modulation and an instantaneous sensitivity. The activation
level determines the moment of spike whereas the synaptic modulation and the
sensitivity model the fast shunting inhibition.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

Fig. 1. Neuron model. The resting potential is –65 mV and the threshold –45 mV. No refractory
period included.

The update rule states that for every incoming spike, the activation level of the
neuron is updated with the synapse weight modulated by the instantaneous sensitivity of
the neuron. The sensitivity is then decreased using the synaptic modulation factor [6].
Such a simple neural model requires only 12 bytes for representation when using fixed
point arithmetic (kneuron = 12 bytes).

Now we have to deal with the synaptic representation. To reduce the amount of
information necessary for representing synapses we have to make a commitment at this
point. Taking into account that RetinotopicNET is used for the simulation of the ventral
visual pathway we can consider the overwhelming majority of receptive fields as being
retinotopic-like. Retinotopy is that structural property of receptive fields that determines
adjacent neurons to receive spikes from adjacent areas in the afferent neural region (Fig.
2). Starting with ganglion cells at lower levels and ending with higher areas, such as the
primary visual cortex (V1), most of the receptive fields are retinotopic.

Fig. 2. The retinotopy of receptive fields

Considering the homogeneity of receptive fields and the functional resemblance,
we can group neurons into functional neural maps. All the neurons in one map share the
same structure for their receptive fields. Thus, there is no need of representing explicitly
their receptive fields profile. We have to mention that our observation holds only under
the assumption of retinotopy.

We can compress the synaptic information into a synaptic matrix that describes a
rule to be used during neural update. The values in the matrix represent synaptic weights.
Every pair of neural maps that are interconnected has at least one associated synaptic
matrix. The memory consumption overhead can be easily computed by considering a
concrete case. Assume there are two interconnected maps that contain n1 and n2 neurons,

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

respectively. Let nmax be the maximum between n1 and n2 (nmax = max{n1, n2}). We can
write:

)()(21max212 nnknknnM synsyn +⋅<⋅=+ (2)
where:

M2(n) – is the memory consumption induced by the synapses of n neurons
ksyn – represents the average connectivity in terms of number of afferent maps

per efferent map (including self-connections and redundancies)
For n neurons, in the worst case, we can maximize:

nknM syn ⋅≈)(2 (3)
Equation (3) gives a worst case estimation for the memory consumption. The ksyn is

a constant dependent on the particular connections in the architecture that is simulated
using RetinotopicNET. We can compute the total amount of required memory as in
equation (4):

nkknMnMnM synneuron ⋅+=+≈)()()()(21 (4)
Thus:

nknM mem ⋅≈)((5)
where:

M(n) - is the total memory required for representing n neurons and their synapses
kmem - is a constant that depends on the architecture of the simulated model
The total memory consumption for a given simulated architecture is linearly

scalable with respect to the number of neurons in the system.

2.2. Solutions to dynamic problems
As stated before, there are two aspects that influence the dynamics of the simulator.

The first one is related to the computational complexity at the neuron level. The simpler
the neuron model, the faster is the simulation of its behavior. We try to maintain the
neuron model as simple as possible. RetinotopicNET uses simple, linearly integrating,
integrate-and-fire neurons. In addition, rank-order coding has been implemented, in
order to account for fast-shunting inhibition [12]. Every time an incoming spike is
received on a dendrite the neuron's state is updated using the following rules:

]_[)()()1(synapsecurrentWSUU ttt ⋅+←+ (6)

MSS tt ⋅←+)()1((7)
where:

U(t) - represents the internal activity of the neuron at time t
S(t) - is the sensitivity of the neuron as resulted from inhibition gathered from the

interneurons. Its value decreases with every spike from 1 towards 0.
M - is a constant synaptic modulation factor. Its value is between 0..1, a value close

to 1 inducing a weak shunting inhibition and a value close to 0 inducing
strong shunting inhibition

No refractory period is included and a simple comparison of the internal activation
with the threshold is done after updating the neuron's state. Such a simple model offers
an increased speed of processing.

The second aspect of dynamic simulation involves more complex problems that are
related to the information flow in the system and the updates that are necessary for every
time step. Many studies showed that most of the neurons, in asynchronous neural
models, are in a steady state and do not require update [5] [2]. The only interesting

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

aspects in the dynamics of integrate-and-fire spiking networks occur due to neural
spikes. Therefore, we have no reason to update neurons that do not receive any incoming
spikes on their dendrites. It can be stated that the dynamics of an integrate-and-fire
neural network are driven by the spike events. Spikes are the most important information
to be propagated and processing should be centered only on spike propagation and
updates due to spikes. An optimal simulator should be event-driven and, in our case, the
events are the neural spikes.

RetinotopicNET makes use of the event-driven nature of the spiking neural
networks. In every time step, a neural map processes its lists of incoming spikes. For
every spike in the list, we use a simple update technique that determines the neurons that
are to be updated as a result of the current spike. An update window is computed using
the synaptic matrix. The state of every neuron in the update window is recomputed.
After making all the necessary updates, the system generates the new spikes for the
current map. Thus, processing is centered only on necessary updates as a result of
incoming spikes. No update is performed for neurons that receive no spikes and this is
consistent since we did not include a refractory period or a leak current in the model.

The number of spikes determines the processing effort. For a visual-processing
model, extending the system is equivalent to enlarging the size of the maps [7]. As a
result, the number of neurons increases. The average number of spikes increases linearly
with the number of neurons that could generate these spikes (Equation 8).

nkN spikesspikes ⋅= (8)
where:

Nspikes - is the average number of spikes generated during the simulation cycle
kspikes - is a constant that represents the average number of spikes produced by a

neuron during its simulation lifetime
n - is the total number of neurons
In a neural model that uses asynchronous spiking, kspikes is very reduced yielding a

relative stability of the number of spikes generated. Because of the rank-order coding
used, we propagate only a small fraction of asynchronous spikes in every iteration and
thus kspikes is being reduced. We can consider the above dependency as being a sublinear
one (nNspikes ≈). Experimental evidence would confirm later that our assumption is
good.

The computational effort does not only depend on the number of spikes but on the
average size of receptive fields as well. The size of the spike update window is, in most
of the cases constant, as derived from the size of the synaptic matrix. However, there are
also receptive fields that cover most of the visual field [6] in the ventral visual pathway
model. Hence, there is a certain dependency between receptive field size and the number
of neurons in the system (that, in the case of visual processing is determined by the size
of the stimulus image). The dependency is also sublinear and statistically it can be
maximized (nRFsize <).

Taking into account all these remarks, we can compute the processing effort, on
average, for a typical visual pathway model in simulation. The number of updates, on
average, is given by:

nkRFNN updsizespikesupd ⋅≈⋅≈ (9)
where:

Nupd - is the average number of updates as a result of spike generation and
propagation during the simulation

kupd - is a constant that captures the architectural properties of the model simulated

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

n - represents the total number of neurons

In other words the processing effort is, statistically speaking, linearly dependent on
the number of neurons in the model. The demonstration is quite empirical but
experimental evidence will prove that it is consistent.

2.3. Implementation details
Next we will discuss the way RetinotopicNET makes use of the solutions to static

and dynamic problems.
The building blocks of RetinotopicNET are the neural maps. A neural map is a

matrix of neurons. Every neuron has three parameters: the activation level, the
instantaneous sensitivity and the synaptic modulation. Additionally, a map has two
associated lists: a spike list and a list of the afferent maps (Fig. 3).

Fig. 3. The structure of a neural map

For every afferent map, a synaptic matrix is memorized in the synaptic list. During
simulation, the spikes from the afferent maps are inspected. For each spike, the system
selects the appropriate synaptic matrix (corresponding to the afferent map that generated
the spike). The synaptic matrix is used for computing the update window, in other words
the neurons in the current map that need to be updated as a result of the incoming spike.

There are two cases to handle. The first case consists of identical sized maps. Using
the synaptic matrix and the offset from the spiking position to the position of the neuron
to be updated, the exact synaptic weight is selected from the matrix and used in the
update process (Fig. 4).

The second case is more complicated and emerges when the afferent and efferent
maps have different sizes. In this case the system handles both overlapping and non-
overlapping receptive fields. The mechanisms allow RetinotopicNET to achieve neural
zooming [7].

 The information flow inside a neural map is shown in Fig. 3. Spikes are processed
from the afferent maps using the correspondent afferent synaptic matrix. The spikes
resulted from neural update are inserted into the spike list generated during the current
iteration. Simulation is iterative and updates occur at fixed time steps. For each iteration
spikes are being fed into the system and then every map is updated in an ascending
manner. The key aspect of iterative and "event-driven" simulation lies in the fact that the
system slices up the time into a fixed number of epochs when it looks for the spike
events generated within each epoch.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

Fig. 4. The update window

A nontrivial problem to be solved is that of self-connection or lateral interaction
between neurons in the same map. To deal with it, RetinotopicNET first processes the
incoming spikes from afferent maps and then completes an additional cycle for lateral
interaction. As a result of inhibition some spikes are pooled off the spike list. The system
saves and then flushes the spike list. The spikes saved are filtered and then merged, with
the new spikes generated, into the final spike list.

3. Results and discussion
The first step in testing RetinotopicNET was to prove that processing time is also

linearly scalable with respect to the number of neurons. We tried to prove that the
assumptions in section 2.2. have experimental support. The testing results in Fig. 5 prove
that the processing time varies approximately linearly with respect to the number of
neurons in the simulation.

Fig. 5. Evolution of processing time for different numbers of neurons in the model on a Pentium®
200 MHz processor system.

We tested RetinotopicNET for simulation of the ventral visual pathway,
responsible for object recognition in the brain. The architecture involves several millions
of neurons and billions of synapses. Using the model of the ventral visual pathway we
achieved complex object recognition in cluttered environment [6].

Simulation times vary with the complexity and size of the input image. Ultra-rapid
visual categorization occurs before all the retina-generated spikes are propagated to the
infero-temporal cortex. When only 20% of the neurons spiked at the retina level, the
recognition occurs and the simulation can be stopped. The calibration of the system

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

consists of setting the synaptic gain for the ganglion cells at the retina level [6]. Based on
this calibration a trade-off between number of neural spikes and accuracy of recognition
can be obtained. On a Windows 2000® platform with a single Pentium® 200Mhz MMX
processor RetinotopicNET simulates 2 millions of neurons and 3 billions of synapses for
the given model in a time magnitude of 3 to 5 minutes. With further calibration the
system had been able to perform real-time processing for object recognition [6].

An improvement is possible by associating an absolute time of spiking to every
spike generated. The absolute time can be computed using the activation of the neuron
and the incoming excitation / inhibition. Such a strategy would offer the system a
continuous time domain for simulation and could eliminate discretization errors.

Acknowledgements
We thank to SC. NIVIS SRL (www.nivis.com) for supporting this research.

References

[1] J.M. Bower, D. Beeman: The book of GENESIS. New York: Springer-Verlag, (1998).
[2] A. Delorme, et al.: SpikeNET: A simulator for modeling large networks of integrate

and fire neurons. In J. M. Bower (Ed.), Computational neuroscience: Trends in
research 1999, neuro-computing (Vols. 26–27, pp. 989–996). Amsterdam: Elsevier
Science.

[3] D. Hubel, T. Wiesel: Receptive fields and functional architecture in two nonstriate
visual areas (18 and 19) of the cat. J. Neurophysiol., No. 28, pp. 229–289, (1965).

[4] W.W. Lytton, T.J. Sejnowski: Simulations of cortical pyramidal neurons
synchronized by inhibitory interneurons. J. Neurophysiol. 66, 1059–1079, (1991).

[5] M. Mattia, P. Del Giudice: Efficient Event-Driven Simulation of Large Networks of
Spiking Neurons and Dynamical Synapses, Neural Computation, 12, pp. 2305–
2329, (2000).

[6] R.C. Mureşan, Complex Object Recognition Using a Biologically Plausible Neural
Model. In N.E. Mastorakis: Advances in Simulation, Systems Theory and Systems
Engineering, (pp. 163-168), Athens: WSEAS Press, (2002).

[7] R.C. Mureşan: Visual Scale Independence in a Network of Spiking Neurons,
ICONIP '02 Proceedings, 4, 1739-1743, (2002) .

[8] R. van Rullen, S.J. Thorpe: Rate coding versus temporal order coding: what the
retinal ganglion cells tell the visual cortex. Neural. Comput. 13, 1255-1283, (2001).

[9] M.N. Shadlen, W.T. Newsome: Noise, neural codes and cortical organization. Curr.
Opin. Neurobiol. 4, 569–579, (1994).

[10] M.N. Shadlen, W.T. Newsome, The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding. J. Neurosci.
18, 3870–3896, (1998).

[11] S.J. Thorpe, D. Fize, C. Marlot: Speed of processing in the human visual system,
Nature, 381(6582), 1996, pp. 520-522.

[12] S.J. Thorpe, J. Gautrais: Rank order coding. In J. Bower, Computational neuro-
science: Trends in research, (pp. 113-118), New-York: Plenum Press, (1998).

[13] S.J. Thorpe, A. Delorme, R. van Rullen: Spike-based Strategies for Rapid
Processing. Neural networks 14 (2001), 715-725.

[14] E. Veneau: Codage Impulsionnel Par Rang Et Apprentissage, Cerco, (1996).

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 247-254

